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Motivation: Query-based Retrieval
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Applicable for large-scale classification with millions of labels

Web-scale Challenges

e Extremely large databases — 100s of TB
o Linear dependence on representation size (d)

O Embedding look-up much more expensive than featurization

® Require Approximate Nearest Neighbour Search (ANNS)
O Post-hoc compressed index

® Incapable of Multi-Granularity
o Use same high-d embedding for all tasks
o Retrain a model for low-d based on deployment constraints
o Eg: 2048-d ResNet50 image representation for all tasks

Adaptive Deployment — Goals

One representation vector for all downstream tasks
o No post-hoc compression or expensive feature selection
o No retraining for specific resource constraints

Accurate and efficient low-d embeddings

o Baked within the high-d embedding — Free

o Reduced costs for expensive & high-recall shortlisting
o As accurate as independently trained counterparts

High-d embedding for cheap & precise re-ranking
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& Matryoshka Representation Learning - MRL

e Solve the same learning task at multiple granularities (log(d))

Easily adaptable to any representation learning setup
o Scale, modality and task agnostic — 1B images with ease

First k dims form the required low-d embeddings
o As accurate as retrained low-d counterparts

Enable adaptive deployment

o Accurate large-scale classification & retrieval based on constraints

Classification Accuracy
ImageNet OVA

e ResNet50: Same accuracy as independently
trained low-d models (FF)
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Adaptive Classification
ImageNet-1K

e ResNet50-MRL model with cascades
e 14x smaller embedding size for same accuracy
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e ResNet50 models trained on ImageNet-1K
e Other baselines fall off drastically at low-dimensions
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Representation Quality
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e ViT-B/16 models trained on JFT-300M and ALIGN (V+L)

ViT+JFT & ALIGN k-NN

e Scales to 1B images w/o accuracy drop
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Query Representation
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ImageNet-1K

e 14x real-world speed-up for the best mMAP@10
e All real-world implementations use HNSW for shortlisting
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ImageNet-4K (Try it!)
e 6x real-world speed-up for the best mAP@10
® Funnel retrieval alleviates the need for optimal D_ & D_
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https://homes.cs.washington.edu/~kusupati/pubs/kusupati22.pdf

