Microsoft Extreme Regression for Ranking & Recommendation

Research

Extreme Regression

* Predict relevance scores of millions of labels
towards a given data point

* Reduces to Extreme Classification if relevance
scores are binary

Training:

X : Data Points

Prediction:

Applications

* A new paradigm for reformulating ranking &
recommendation

* Predict the most relevant label shortlist & their
relevance scores for further reranking
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Limitations of Existing Approaches

Extreme Classification:

* Predicts less relevant labels due to binary relevance

assumption

* Does not generate useful relevance scores for further

filtering or re-ranking

Conventional Regression:

* High accuracy and low latency predictions required in

real-world recommendation

e 1-vs-All regressors scale linearly in number of labels

* Scalable tree-based regressors suffer from low accuracy

Extreme Regression Metrics

* Measure the regression errors of millions of labels

* Provide a good proxy for ranking quality

* Irrelevant labels dominate traditional regression metrics

Extreme Mean Absolute Deviation @ k:
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where S}, contains k labels with largest errors

Properties:

*XMAD @ 1(£,r) = ||f — r|lo
* XMAD @ L = MAD
* Ranking-regret @ k < 2 XMAD @ 2k

XMAD is a better indicator of filtering & re-ranking
gualities than purely ranking or regression metrics

WP-rerank-p WP-p
Method AUPRC XMAD-p@5 MAD
@5 (%) P @5 (%)
EURLex-4K
Parabel 0.092 49.67 0.4227 3.96 48.29
XReg 0.117 50.39 0.1849 1.22 49.72
XReg-zero 0.085 50.12 0.2255 1.21 49.72

XReg: Extreme Regressor

Probabilistic Model:

* How XReg makes recommendations to a user who

likes oranges, grapefruits and blueberries ?
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Three stages of Xreg:

1) Learn
Item tree

2) Train probabilistic
models

3) Predict for a
new user

* Learn item tree by hierarchical clustering of items
e Similar items end up in the same leaf node

Berries

* Train a separate linear regressor for each item in a leaf node
 Recommend items with high regression scores

Results

Movie Recommendation:
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Computational Advertising:
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