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|. loT Requirements in The Smart City 2. N+ | -class Radar Classification

» Resource efficiency » Example of N source classes + clutter class (N+-class) classification
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» Deployment feasibility
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» Efficiency-Accuracy trade-off in existing solutions

VS ML Model Accuracy FLOPS Fits on Cortex-M3?

SVM (15 features) 0.85 37K Yes

LSTM 0.89 100K No

e CNN (1s FFT) 0.91 1.3M No

e EMI-LSTM 0.90 20K No

3 Pri\/acy preser\/in o EMI-FastGRNN 0.88 8K Yes

Sl GompLEng Edge Computing » Interesting events may occur rarely
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3. MSC-RNN Solution for N+ | classes 4. Performance of MSC-RNN

» Multi-Scale Cascaded RNN (MSC-RNN) handles the two sub-problems of clutter » Performance comparison with SVM: Outperforms all-domain feature
rejection and source discrimination at different time scales of featurization handcrafting at mote scale with purely time-domain feature leaming
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» MSC-RNN Components: ) . oF
_ , . . | _09] B - 509
(1) EMI-FastGRNN: works at instance-level and is continuously active 8 0s g, .
c g
(i) FastGRNN: works at window-level £ 07| 07
o T 16l =§m_1g; ESI;:;)S | §06> Bl SVM_15f (2-Tier) |
Both the components are cascaded so that FastGRNN is invoked only when EMI- EvsCrRn ' BSVU_15f (3.l
. 0.5 [T W
FastGRNN detects displacement source v s 2 oo 15 2
Window Len. (s) Window Len. (s)
Decision
M | D | A T Win. Accuracy Clutter Recall
icro-power pulse-Doppler 2 Len. (s) [ SVM_15f SVM_15¢
é[ [FGRNN]—[FGRNN ]—[FGRNN]—[FGRNNJ— }8 (3-class) MSC-RNN (3-class) MSC-RNN
S ‘ | 83 0.851 0.944 0.758 0.999
Embeddings g 1.5 0.934 0.954 0.996 0.999
'/'j""'"""""'""""""""""""T%Ug)és 0.959 0.972 0.999 1.000
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< » Feature computation comparison with SVM: 3.5x more efficient than a
- N ~\] Multiple . :
“L /| e competitive SVM solution
l X - Est. Duty Cycle (Cortex-M3)
> . st. Du ycle (Cortex-
/ ~— MSC-RNN Architecture 97% Clutter _ 98% Clutter
Complex Radar Time Series
» Fast(G)RNN i MSC-RNN (Inp. dim.=2) 21.00% 20.00%
MSC-RNN (Inp. dim.=16) 10.87% 10.70%
- FastRNIN stabilizes training with residual connections and adds just 2 additional 2-Tier SVM 2.05% 1.70%
3-Class SVM 35.00% 35.00%
scalars, o & P
- & & B when converted to vector gates result in FastGRNN » Comparison with EMI: Outperforms monolithic EMI algorithms on all three
. metrics of accuracy, non-human and human recalls
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,Zt = o(Wx, + Uh,, + b,) 0.757 Bl EMI-FastGRNN | | L0735 B EMI-FastGRNN | 5 0-75] BlEMI-FastGRNN | |
h', = tanh(Wx, + Uh,_, + b,) 0.7 BEEMILSTM || 0.7} I EMI-LSTM Z 07 EEMI-LSTM
h, = ((l-z)+v) O by +z, O h 0.65 [ veca ] W | 2 065 M
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»MSC-RNN Training: MSC-RNN training loss emulates cascading behavior 5 Refe rences

| » MSC-RNN Loss =

FastGRNN Loss +
FastGRNN Loss | (3 EMI-FastGRNN Loss
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