RNNPool : Efficient Non-linear Pooling for

RAM Constrained Inference

Microsoft:

Code: https://github.com/Microsoft/EdgeML

Researcl

Oindrila Saha!, Aditya Kusupati?, Harsha Vardhan Simhadrit, Manik Varma! and Prateek Jaint

IMicrosoft Research

Our goal: Accurate computer vision models that
can be deployed on tiny devices

. CNN models have many layers with large activations
Barriers: . :

« Large memory footprint, the most constrained
resource on microcontrollers

FC + Softmax

No. of Channels —»3

64 Large activation maps Ave Pooli
\"} o0olln
64 256 128 512 & roolne
256 1024
512 1024 /¢/1024
ol A il
DenseNet121 C1 P1 D1 prnrcu T1 D2 T2 D3 T3 D4 >
14x14 | 7x7 |/ | X7 Ix1
28x28 28x28 X 14x14

56x56 56x56p<—>

_/12 12 ooling with
224x224 stride 2

Shortcut

FC + Softmax
3
64

192 Avg Pooling
256 1024
512 1024 /¢/1024

. ol
DenseNet121 Cc1 [RNNPoollayer(s, 8, 112, 112, 4, 64, 4, 48) T2 D3 T3 D4
G
14x14 14x14 7x7 X

28x28

112x112

224x224

« Standard pooling operators (e.g. max pool) are gross
aggregators, thus are only used with a maximum stride of 2

 RNNPool can reduce intermediate feature maps significantly
(up to 16x) with small loss in accuracy

=» Ensures heavy convolution blocks run on smaller activation maps

Existing Works

Decreasing Model Size

* Pruning
/ « Sparsification

Model Compression

Decreasing Compute
» Depthwise Separable

Convolutions
 MobileNets , EfficientNets

However, peak RAM requirement still remains high

2University of Washington

RNNPool

RNNPool(r, ¢, k, h,, h,)

First sweep with RNN,

Q& -> (blue arrows share weights)
N7
N ,b(\Q Second sweep with RNN,
N =)
< (green arrows share weights)
—
T k #nput channels
<
/ 'é hl Hidden state size of RNN,
Q
& > h2 Hidden state size of RNN,
r/ Columns (c=4)

‘b
Concatenate
output of all
*
four passes 4 hz

of RNN,

’ 4*h
h 2

k

« Takes a patch of the input and produces a 1x1 summary
« Patches having overlap of size = PatchSize — Stride
* For each patch, 4 RNN runs produce the pooled feature vector

Usage

« Semantically equivalent to pooling, so can be used to replace

any pooling operator

« But key usage in reducing image size in beginning of network

to save RAM requirement

FC + Softmax

No. of Channels —»3
64
64 256
128 >12 256 1024 1024
12 1024
DenseNet121 C1 P1 D1 T1 D2 T2 D3 T3 tf D4
1x1
7x7 X7
ozt 2828 28x08 14x14 14x14
112x112 % 56x56 |
224x224 Avg Pooling

l

Replacing with RNNPool
gives boost in accuracy!

OR

FC + Softmax

3
64 Avg Pooling
192 256 1024
512 1024 // 1024
DenseNet121 c1 [RNNPoollLayer(s, 8, 112, 112, 4, 64, 48, 48) T2 D3 T3 tf D4 \/—l;:a
1x1

7x7 7x7
28x28 14x14 14x14
| 112x112
224x224

Reduces peak RAM by
4x and Madds by 3x

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Evaluation

Task 1: Image Classification

Results on ImageNet-10 dataset formed by subsampling 10 classes from
ImageNetlK and MobileNetV2 as the base architecture

| viosel [Accuracy | wadds | iarams | Rav_

Base Network 94.2 0.300G 2.2M 2.29MB

Average Pooling 90.8 0.334G 2.0M 10x Lower RAM !
Standard Pooling

Techniques Max Pooling 92.8 0.200G 2.0M

Strided Conv 93.0 0.200G 2.1M
ReNet 92.2 0.296G 2.3M

RNNPool - 0.226G 2.0M

TaSk 2: Visual W&kEWOrd =P Predict whether a person is present

8x less RAM
40% less compute

= Y

No person Present Person Present

91 . 91 !
Accuracy similar to SOTA : :
90 in 32KB peak RAM! 90 A I
— | - I
\0 o
3; 89 | > g9 :
O I 3’ [
O 88 ! © g8 |
= | S I
S g7 - : S '
< 250KB ! < 87 60 million !
constraint MAdds/
86 86
I . m Our Method
: inference | & B
85 T T T T % 1 85 T T T T T 1 ase Ine
0 50 100 150 200 250 300 0 10 20 30 40 50 60
Peak Memory Usage (KB) MAdds (Millions)

Task 3: Face Detection

Comparison with SOTA m

for very low MAdds E M H
category on WIDER EagleEye 1.17MB 0.23M 0.1G 0.74 0.70 0.44

FACE validation subset pyoolFace-quant [I225KBIN 0.07v 0.1c [0180) 1078110553
70M MAdds

Face Detection 3

M4 Depl t
eploymen i
ploy 160KB Model Size

10.45 sec/image on

Method RAM |#Params| MAdds

188KB peak RAM

. SCUT Head Dataset:
STM32F439-M4 device https://github.com/HCIILAB/SCUT-HEAD-Dataset-Release

clocked at 168 MHz

Image from https://researchdesignlab.com/stm32-arm-
cortex-m4-development-board-stm32f407vet6.html

