RNNPool : Efficient Non-linear Pooling for

RAM Constrained Inference
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Our goal: Accurate computer vision models that
can be deployed on tiny devices

.  CNN models have many layers with large activations
Barriers: . :

« Large memory footprint, the most constrained
resource on microcontrollers
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« Standard pooling operators (e.g. max pool) are gross
aggregators, thus are only used with a maximum stride of 2

 RNNPool can reduce intermediate feature maps significantly
(up to 16x) with small loss in accuracy

=» Ensures heavy convolution blocks run on smaller activation maps

Existing Works
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However, peak RAM requirement still remains high

2University of Washington

RNNPool

RNNPool(r, ¢, k, h,, h,)

First sweep with RNN,

Q& -> (blue arrows share weights)
N7
N ,b(\Q Second sweep with RNN,
N = )
< (green arrows share weights)
—
T k #nput channels
<
/ 'é hl Hidden state size of RNN,
Q
& > h2 Hidden state size of RNN,
r/ Columns (c=4)

‘b
Concatenate
output of all
*
four passes 4 hz

of RNN,

’ 4*h
h 2

k

« Takes a patch of the input and produces a 1x1 summary
« Patches having overlap of size = PatchSize — Stride
* For each patch, 4 RNN runs produce the pooled feature vector

Usage

« Semantically equivalent to pooling, so can be used to replace

any pooling operator

« But key usage in reducing image size in beginning of network

to save RAM requirement
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Replacing with RNNPool
gives boost in accuracy!
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Reduces peak RAM by
4x and Madds by 3x
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Evaluation

Task 1: Image Classification

Results on ImageNet-10 dataset formed by subsampling 10 classes from
ImageNetlK and MobileNetV2 as the base architecture

| viosel [ Accuracy | wadds | iarams | Rav_

Base Network 94.2 0.300G 2.2M 2.29MB

Average Pooling 90.8 0.334G 2.0M 10x Lower RAM !
Standard Pooling

Techniques Max Pooling 92.8 0.200G 2.0M

Strided Conv 93.0 0.200G 2.1M
ReNet 92.2 0.296G 2.3M

RNNPool - 0.226G 2.0M
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8x less RAM
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Task 3: Face Detection

Comparison with SOTA m
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. SCUT Head Dataset:
STM32F439-M4 device https://github.com/HCIILAB/SCUT-HEAD-Dataset-Release

clocked at 168 MHz

Image from https://researchdesignlab.com/stm32-arm-
cortex-m4-development-board-stm32f407vet6.html



