
Towards Adaptive Intelligence

Aditya Kusupati

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington
2024

Reading Committee:
Ali Farhadi, Co-Chair

Sham Kakade, Co-Chair
Luke Zettlemoyer

Program Authorized to Offer Degree:
Computer Science and Engineering

© Copyright 2024

Aditya Kusupati

University of Washington

Abstract

Towards Adaptive Intelligence

Aditya Kusupati

Co-chairs of the Supervisory Committee:

Professor Ali Farhadi

Computer Science and Engineering

Professor Sham Kakade

Computer Science and Engineering

Living beings, including humans, are highly adaptive, especially in terms of context and compute

(resources). While intelligent machine learning systems are ubiquitous today, their current rigid design

hinders adaptation as they struggle with ever-changing data, use cases, and deployment settings, requiring

dedicated efforts to function properly. In this thesis, I present my work towards enabling adaptive machine

learning solutions for flexible and seamless deployment across widely changing scenarios. First, I present

Matryoshka information packing for adaptive data representations to handle growing data size and task-

specific usage seamlessly. Then, I build a web-scale search system, AdANNS, leveraging matryoshka

representations to enable adaptive search across data. Next, I extend these principles to the neural networks,

crafting MatFormer models. This next-generation Transformer architecture adapts its computational footprint

based on input and device with minimal overhead during deployment. Along the way, I worked on the first

end-to-end learnable sparsity solution to solve the problem of optimal compute allocation across layers of

neural networks. Further, to address the inherent rigidity in the design of web-scale intelligent systems, I

worked on differentiable search solutions, fundamentally rethinking how large-scale AI pipelines harness data

for continuous improvement. Finally, I conclude with the impact these works had in real-world deployments

and present future works directed towards adaptive contextual and continual intelligence across disciplines.

Acknowledgements

It has been a delightful PhD experience, the past 5 years, and I would attribute it to all my advisors, mentors,

collaborators, friends, and family. It might be rare to hear, but I would do it all over again in a heartbeat!

First, I am eternally grateful to my advisors, Ali Farhadi, Sham Kakade, and Prateek Jain. Each of them

helped me evolve in many aspects beyond technical and research acumen. Something I can never fathom is

the amount of trust and confidence they had in me, even when (most of the time, honestly) I did not believe in

myself. I thank them for their unwavering support all along. Ali is the reason I joined the Allen School. The

1-1 meeting during visit days in 2019 convinced me beyond doubt that I would be happy working with him at

UW – it turned out to be better than I could have ever dreamt. He has been an advisor I aspire to be like in

every way. Ali has been the pillar of my strength in countless ways. He just gets me, which has been a rarity

all my life! All I can say is thank you, Ali. I am always surprised by how Sham operates, his technical depth

in seemingly unrelated research directions amazes me. Sham has one ability that I have rarely seen in anyone

and want to imbibe, apart from the flair (I do not think I can ever match that) – he can see 6 months into the

future of a problem anyone is working on and tell what shall work and what will fail, he rarely was wrong in

that. He along with Ali cheered me on and supported my convictions even when they were never the hottest

things and strongly supported my faculty search. Sham took a chance on me to do empirical research and I

am so glad I got to work with him on everything Machine Learning. Prateek, my unofficial third advisor,

mentor, confidant, and friend for the past seven years, has borne the brunt of my shenanigans. I still remember

the call I picked up at KFC in Bombay about MSR when I was confused about what to do next. He supported

me through every challenge, sometimes in person, most times across time zones. He brought me to Google,

which has incredibly changed my research trajectory. He is the reason I love having co-advisors, and I thank

him for treating me as a peer despite his accomplishments – which still surprises people.

I admire my PhD committee – Luke Zettlemoyer, Zaid Harchaoui, and Rahul Sukthankar – and thank

5

them for all the suggestions and support along the way. Luke told me 2 years ago that my research will

be relevant 2 years down the line and he was spot on. He is an extremely knowledgeable and fun person

to be around. I knew Zaid through my academic siblings and then I worked on something he worked on

over a decade ago, which caught his eye. He was incredibly supportive of that work before anyone else in

the community saw the potential. That was partly the reason I kept working on new ways of representation

learning for a while now. I thank Luke and Zaid for helping me in unexpected ways during my PhD. Rahul

made an exception to be on my committee and it has been an incredible last couple of years knowing him at

Google. He has championed most of the ideas I brought to the table. I am constantly amazed by his ability to

stay on top of things despite leading a huge organization, yet still finds time to talk with me whenever needed.

I also thank him for his support during my faculty applications and all the wisdom he shared.

I have also been very fortunate to have many great mentors along the way. My research journey started

with inimitable advising from Soumen sir working on representation learning – who would have thought! He

set me on a course and helped me reach my first checkpoint – Microsoft Research India – for which I am

grateful. At MSR India, I learned the ropes of doing research primarily from my advisor Manik Varma with

Prateek joining in a bit later. I owe the majority of my research philosophy and methodology to Manik. I am

extremely lucky to have worked with him so closely for 2 years and I credit him for all of my real-world

deployment obsession. Manik has taught me how to do empirical research right, given me life and career

advice, and made me feel at home in Delhi and I thank him for that. Funnily, the research statement I wrote

to work with him was about multi-modal search, which is what I eventually ended up doing in the latter part

of my PhD. Tom Duerig came out of nowhere in my life. He matches my energy and has taken my work to

places where I could never imagine. He believed in me and let me do so much stuff as a part-time student

researcher in Google which is not typical. I enjoyed the chats with him and all the moonshots I pitched him –

as he says I still have to deliver on one more thing I promised and I shall. Another person I never thought I

would have such close ties to is Jeff Dean. Over the years, he patiently listened to my ideas, debated them,

validated them, and encouraged me to take the leap when I was hesitant. I cherish the chats I have had with

him and will remember how he fought for our ideas, just because it was the right thing to do, despite not

having any skin in the game – I will try and pay it forward. Another person I would like to mention here is

Ranjay Krishna who reminds me of what I could be if I do everything right. He has been a support system I

6

constantly relied on for the past 2 years since he came to UW. He also gave me the opportunity to co-teach

a class for the first time which I am thankful for. I am very happy to have spent time with and learned

from all my teachers in school, Supratik sir and other professors at IIT Bombay, Vishwa and Pierre during

my undergrad internships, Naga, Harsha, Praneeth, Sriram and many others at MSR, Sewoong, Ludwig,

Kevin, Hanna, Pang Wei, Abhishek, Byron and countless others at UW CSE, Sanja and Alyosha for my PhD

internships, Kaifeng, Mojtaba, Howard, Manish, Inderjit, Sanjiv, Raphael, Jon, Iftekhar, Aakanksha, Rohan,

and everyone who believed in me at Google. I also am grateful for the advice and help I received from people

in the research community like Lucas, Abhinav, Matei, and Carlos to name a few. I especially want to shout

out how amazing Kaifeng is as a manager at Google. I am also grateful to Inderjit, Abhinav, and Manish for

their support during my faculty search. Innumerable mentors helped me along the way and I do not think I

would be able to do justice in a single paragraph.

This is a special note dedicated to Elise and team (Elle, Les, Joe, and Chris) + UW CSE staff. UW CSE

runs because Elise is here – there’s nothing more that needs to be said. She has been my one-stop solution for

countless things, and I am incredibly grateful that she chose our well-being above all else. She also supported

some of my out-of-the-box ideas, such as PAMS/PARS and removing the GRE requirement, for which I am

very thankful. The impact we have had with any of these programs is primarily due to Elise’s efforts. UW

CSE staff helped with so many last-minute things during the last 5 years and I also want to appreciate the

CSE2 2nd floor housekeeping staff for her warm smile every day over the years. While not CSE staff, Tran

and Hanna have done an incredible job handling my odd requests with Ali’s calendar over the years.

I have been extremely fortunate to be part of RAIVN lab and Sham’s lab. RAIVN lab was a lifeline. 5 of

us, Matt, Mitchell, Gabe, James and I joined PhD together and I am lucky to have worked alongside them and

learn from them. Especially, Matt has been an incredible soundboard and my default second author, and so

was I to him – I learned so much from him and cherish his friendship. James helped me most unexpectedly

by just being there in the lab during covid – that was the most important thing I needed then. I was always

in competitive environments growing up and Mitchell provided me with the implicit competitiveness that

helped me go beyond. Gabe showed me the much-needed relaxed attitude in life. I also benefited a lot from

Kiana, Aaron, Rowan, and Wei-Chiu’s advice at various stages of my life. I liked spending my time in

the lab most days just hanging out with Sarah, Reza, Vivek, Ainaz, Kuo-Hao, Keivan, and Matt Deitke. I

7

have special memories with every one of them and will miss them once I am locked out of the lab – be it

gossiping with Sarah, making teasers with Vivek, joking around with Ainaz, and hearing Reza’s passionate

speeches about problems with video benchmarks. It has been more fun since Ranjay’s students joined the

lab, especially Santy, Zixian, Amita, Scott, Cheng-Yu, and others. I also had a great time with my academic

siblings from Sham’s lab – Motoya, John, Krishna, and Aravind. Motoya joined at the same time as me

and I wish covid hadn’t happened so we could have spent more time together. John was a great mentor and

teacher and Aravind had enough crazy ideas to go around. Finally, Krishna is someone who looked up to in

undergrad and I was stoked to have him as a friend and mentor over the years.

The success of my work is due in large part to my amazing collaborators and mentees. I want to thank

Kush and Ashish for helping me with my first research paper and I tried to pay it forward. I am grateful to

also have worked with Manish, Don, Sachin, Oindrila, Yash, Nilesh, Sahil Bhatia & Verma. Dhruv, Gantavya,

Aniket, Alex, Ani, Roozbeh, Sharan, Alan, Ethan, Sneha, Jinhyuk, Nithi, Spandana, Anirudh, Aishwarya,

Lovish, Ramnath, Devvrit, Tim, Anshul, Gagan, Nidhi, Sujoy, Arsha, Umangi, Sailesh, Sheshansh, Shishir,

Sridhar, Chirag, Kunal, Saurabh, Akarsh and many more – I am missing so many people here. I have learned

something from each of you and thanks for helping me become a better researcher. Aniket and Ethan have

trusted me enough to have been solely mentored for over a year during my PhD and I wish them both the best

in their career. Sailesh, Sneha, Anirudh, Spandana, Nithi, Kaifeng, and many others at Google have believed

in my ideas and helped them be a reality in serving billions of users daily.

Friends, I made a lot of them and am grateful for what every one of them brought to my life. I am grateful

to have two of my closest friends, Raghav and Tapan, as my housemates for the past 5 years – I cherish quite

a few core memories with them all while discussing crazy research (contact Raghav for more stories), Tapan’s

hospital adventures, our long drives in the focus and stupid adventures on the snow. We have been through a

lot of ups and downs all while growing old enough to get PhDs. All my friends in UW, there are so many of

them, not a day goes by where I don’t surprise someone around me about knowing someone else. All the

desi grads who have been together for a long time Pratyush, Kamath, Sudheesh, Priyal, Venky, Vishwas,

Prashanth, Gantavya, Reshabh, Ashish, Bandhav, Sneha, Anshul, Divyansh, Rohan, Sriyas, Sahil, Santy –

I am sure I missing a lot more here. Friends I made across UW labs Ana, Vivek, Mike, Alisa, Jon, Alex,

Andrew, Josh, Ian, Thao, Dhruba, Tim, Sewon, Akari, Yizhong, Alice, Jingwei, Johanna, Yuxuan, Xiang,

8

Joel, Sally, Ewin, Kentrell, Kaiming, Miranda, Anant, Dorna, Maddy, Audrey, Joseph, Suchin, Bharagavi,

Mandar, Jieyu, Aashaka, Mohit, Anas, Arti, Galen, Kalyani, Sam, Ofir, Aleks, Ashrujit, Jake, Nathan, Lalit,

Ramya – yeah for sure I am blanking here. I want to highlight the support system Tim, Sewon, Krishna

Murthy and Wei-Chiu were to me (a junior) during the faculty search.

I am also lucky to have a strong friend group in Seattle. This, I kid you not, includes my closest friends

for the past 24 years. Pavan, Mahima, Rahul, and Sravanth have been an at-home feeling in a distant land.

Adding Sashank to the mix, I am glad to have all of you in my life for over 20 years now and looking forward

to the next 50 years. More friends trickled in through them and others – Rohit, Sukriti, Surya, Sriram, Anmol

..., the listing would do no justice, but I appreciate you all so much. Surprisingly, a core of my IIT B friends

ended up living in Bellevue. Owais and Ritesh are two people I am glad to have in my life at various stages be

it technical or personal. Vishnu, DB, Meher, Nitesh, and Park all used to be my respite – as they call, renew

my membership – when I wanted to clear up my mind through their never-ending board games obsession. I

also am lucky to have had other close friends from undergrad be around in the last few years like PV, Krishna

Harsha, Vishal, Sailesh, Suma, Charitha, Siva, Samarth, Sandeep, Vaibhav, Suhas, Rahul, Dileep – there are

so many of them, now that I think of it – but I appreciate everything you all have done for me and all your

friendship. Abhinav’s friendship was a surprise and he has been a constant in my life for the last 2 years now.

I also want to shout out all my school friends – trust me, if I start listing everyone everywhere, this section

will be bigger than my thesis – they were extremely crucial during my formative years. As evident from

everything I wrote till now, I was not content with the number of friends I made here, so I expanded on even

more through my other channels (MSR, conferences, research community and beyond), I especially want to

thank Ashu, Shivam, Jathushan, Utkarsh, Yash, Jonathan among many others for being welcoming faces at

conferences and giving me perspective. I also want to thank Sundar and Venky for being amazing roommates

in Bangalore, and Kranthi and Akhil in insti. To all my friends, just remember that I shall be there if you ever

need me, you can count on me!

I constantly joke that I have more extended family in the US than in India – which is mostly true. I am

extremely grateful to Deepthakka and Vijay mama for having a place for me in Detroit for the past 5 years

and helping me in every means possible. I also want to thank my Babai, Pinni, Peddamma, Tathagaru, Mama,

and Atha among many people who hosted me across the US. I am lucky to have most of my cousins in the

9

US, Vinnu, Tinku, Amala, Vamsi, Bunty, Chinnari, Vinita, Chandu, and Babloo among many others – I have

not listed here – and have had fun with them. All my love to the next-generation kids in these households. It

feels good to detach from research and just spend some quality time with all these people.

Finally, I am ridiculously lucky to have a great family – despite all my mischief and what I bring to the

mix. To be honest, all I did was follow the trail blazed by my parents (Amma and Dad). The extraordinary

amounts of freedom they let me have, shaped me to be the way I am right now. My mom has a reproductive

physiology PhD and my dad is a medical doctor, they rarely cared about what I was up to in my life as long

as I was happy – if they wanted I would have been an actual Doctor – well I settled down by being a Doctor

in Computer Science (sounds funny). My mom sacrificed a lot for me and my brother growing up and has

ever since vicariously lived her dreams of academic success through us – all while never asking for it nor

expecting it. She gets the most credit for anything we have achieved – rightfully so! My dad is the reason I

am so extroverted, he is great with people and the amount of love he gets everywhere is unparalleled. He gave

me one life advice that has been a north star – strive to be the best in whatever you choose to work on and it

does not matter what you choose to work on as long as you love it. He and my mom have a gap of at least a

generation in terms of socioeconomic status and his rise through everything last 28 years has been inspiring.

I love both of you and someday (probably my defense) show what I did as part of my PhD. I also happen

to have an incredible brother, Uday. He is much more hardworking and inquisitive than I ever will be – no

wonder he is doing a harder and more useful PhD than me. He has done an incredible job being my partner in

crime all while validating every one of my moves by following in my footsteps as is or closely – thanks a lot

for this! We went to the same school, undergrad, and pursued computer science research with passion leading

to our doctoral journeys. Now that I am graduating, maybe we will do more idiotic adventures than usual –

which already gives our mom enough panic attacks. My partner, Sanjana, has been a turning point in my

life both personally and professionally – I found all the successes in my PhD only after I met her. Her love

knows no bounds and care only ever grows. She has been my emotional support even with the distance of the

entire I-90 between us the last year. Now that I have no more PhD excuses left to give, I want to spend a lot

more time with her, travel the world, explore new things, and most importantly love her to the moon and

back. Thank you for everything Sanju, I am a happier and better person because of you!

10

DEDICATION

To my family,

and the ever-so-fascinating world we live in,

that led me to where I am and shall lead me to where I will.

11

Contents

1 Introduction 23

2 Matryoshka Representation Learning 27

2.1 Overview . 27

2.2 Introduction . 28

2.3 Related Work . 30

2.4 Matryoshka Representation Learning . 32

2.5 Applications . 33

2.5.1 Representation Learning . 34

2.5.2 Classification . 35

2.5.3 Retrieval . 37

2.6 Further Analysis and Ablations . 40

2.6.1 Ablations . 43

2.7 Discussion and Conclusions . 43

3 AdANNS: A Framework for Adaptive Semantic Search 45

3.1 Overview . 45

3.2 Introduction . 46

3.3 Related Work . 49

3.4 Problem Setup, Notation, and Preliminaries . 51

3.5 AdANNS – Adaptive ANNS . 53

3.5.1 AdANNS-IVF . 54

13

3.5.2 AdANNS-OPQ . 56

3.5.3 AdANNS for Composite Indices . 57

3.6 Further Analysis and Discussion . 59

3.6.1 Compute-aware Elastic Search During Inference 59

3.6.2 Why MRs over RRs? . 59

3.6.3 Search for AdANNS Hyperparameters . 61

3.6.4 Limitations . 62

3.7 Conclusions . 62

4 MatFormer: Nested Transformer for Elastic Inference 63

4.1 Overview . 63

4.2 Introduction . 64

4.3 Related Work . 67

4.4 MatFormer . 68

4.4.1 MatFormer Structure . 68

4.4.2 Training . 69

4.4.3 Mix’n’Match . 70

4.4.4 Deployment . 70

4.5 Experiments . 71

4.5.1 MatLM: MatFormer Language Models . 71

4.5.2 MatViT: MatFormer Vision Transformers . 76

4.6 Conclusions . 78

5 Soft Threshold Weight Reparameterization for Learnable Sparsity 79

5.1 Overview . 79

5.2 Introduction . 80

5.3 Related Work . 82

5.3.1 Unstructured and Structured Sparsity . 82

5.3.2 Dense-to-sparse and Sparse-to-sparse Training . 83

14

5.3.3 Uniform and Non-uniform Sparsity . 83

5.3.4 Learnable Sparsity . 84

5.4 Method - STR . 84

5.4.1 Analysis . 88

5.5 Experiments . 89

5.5.1 Unstructured Sparsity in CNNs . 89

5.5.2 Structured Sparsity in RNNs . 94

5.6 Discussion and Drawbacks . 96

5.7 Conclusions . 98

6 LLC: Accurate, Multi-purpose Learnt Low-dimensional Binary Codes 99

6.1 Overview . 99

6.2 Introduction . 100

6.3 Related Work . 102

6.4 Learning Low-dimensional Binary Codes . 103

6.4.1 The LLC Method . 104

6.4.2 Discovered Taxonomy and Visualizations . 106

6.5 Applications . 107

6.5.1 Efficient Multi-class Classification . 107

6.5.2 Efficient Retrieval . 110

6.5.3 Out-of-Distribution (OOD) Detection . 112

6.5.4 Ablation Studies . 113

6.6 Discussion and Conclusions . 114

7 Discussion, Conclusion and Future Work 117

15

List of Figures

2.1 Matryoshka Representation Learning is adaptable to any representation learning setup and

begets a Matryoshka Representation z by optimizing the original loss L(.) at O(log(d)) chosen

representation sizes. Matryoshka Representation can be utilized effectively for adaptive deployment

across environments and downstream tasks. 29

2.2 ImageNet-1K linear classification accuracy of ResNet50 models. MRL is as accurate as the

independently trained FF models for every representation size. 34

2.3 ImageNet-1K 1-NN accuracy of ResNet50 models measuring the representation quality for

downstream task. MRL outperforms all the baselines across all representation sizes. 34

2.4 ImageNet-1K 1-NN accuracy for ViT-B/16 models trained on JFT-300M & as part of ALIGN.

MRL scales seamlessly to web-scale with minimal training overhead. 36

2.5 Despite optimizing MRL only for O(log(d)) dimensions for ResNet50 and ViT-B/16 models;

the accuracy in the intermediate dimensions shows interpolating behaviour. 36

2.6 Adaptive classification on MRL ResNet50 using cascades results in 14× smaller representa-

tion size for the same level of accuracy on ImageNet-1K (∼ 37 vs 512 dims for 76.3%). . . . 38

2.7 mAP@10 for Image Retrieval on ImageNet-1K with ResNet50. MRL consistently produces

better retrieval performance over the baselines across all the representation sizes. 38

17

2.8 The trade-off between mAP@10 vs MFLOPs/Query for Adaptive Retrieval (AR) on ImageNet-

1K (left) and ImageNet-4K (right). Every combination of Ds & Dr falls above the Pareto

line (orange dots) of single-shot retrieval with a fixed representation size while having config-

urations that are as accurate while being up to 14× faster in real-world deployment. Funnel

retrieval is almost as accurate as the baseline while alleviating some of the parameter choices

of Adaptive Retrieval. 39

2.9 Grad-CAM [224] progression of predictions in MRL model across 8, 16, 32 and 2048 di-

mensions. (a) 8-dimensional representation confuses due to presence of other relevant objects

(with a larger field of view) in the scene and predicts “shower cap” ; (b) 8-dim model con-

fuses within the same super-class of “boa” ; (c) 8 and 16-dim models incorrectly focus on

the eyes of the doll ("sunglasses") and not the "sweatshirt" which is correctly in focus at

higher dimensions; MRL fails gracefully in these scenarios and shows potential use cases of

disagreement across dimensions. 41

2.10 31-way ImageNet-1K superclass classification across representation size for MRL & FF

models showing the capture of underlying hierarchy through tight information bottlenecks. . 42

2.11 Diverse per-superclass accuracy trends across representation sizes for ResNet50-MRL on

ImageNet-1K. 42

3.1 AdANNS helps design search data structures and quantization methods with better accuracy-

compute trade-offs than the existing solutions. In particular, (a) AdANNS-IVF improves

on standard IVF by up to 1.5% in accuracy while being 90× faster in deployment and (b)

AdANNS-OPQ is as accurate as the baseline at half the cost! Rigid-IVF and Rigid-OPQ

are standard techniques that are built on rigid representations (RRs) while AdANNS uses

matryoshka representations (MRs) [147]. 47

3.2 1-NN accuracy on ImageNet retrieval shows that AdANNS-IVF achieves near-optimal

accuracy-compute trade-off compared across various rigid and adaptive baselines. Both

adaptive variants of MR and RR significantly outperform their rigid counterparts (IVF-XX)

while post-hoc compression on RR using SVD for adaptivity falls short. 54

18

3.3 AdANNS-OPQ matches the accuracy of 64-byte OPQ on RR using only 32-bytes for

ImageNet retrieval. AdANNS provides large gains at lower compute budgets and saturates

to baseline performance for larger budgets. 57

3.4 Combining the gains of AdANNS for IVF and OPQ leads to better IVFOPQ composite

indices. On ImageNet retrieval, AdANNS-IVFOPQ is 8× cheaper for the same accuracy

and provides 1 - 4% gains over IVFOPQ on RRs. 57

4.1 MatFormer introduces nested structure into the Transformer’s FFN block & jointly trains all

the submodels, enabling free extraction of hundreds of accurate submodels for elastic inference. 64

4.2 Validation loss & one-shot downstream evaluation scores for the 2.6B MatLM & baseline

models. Mix’n’Match helps generate accurate and more consistent models from MatLM that

lie on the performance-vs-compute curve spanned by the explicitly optimized submodels. . . 73

4.3 We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B parameters

and observe the scaling trends of all granularities (S, M, L, XL) for validation loss and 1-shot

downstream evaluation scores. We find that the MatLM-XL models across scales mimic the

training trends of Baseline-XL models. Interestingly, we also note that that validation loss

and downstream evaluations follow the scaling trends of the XL-models across all granularities. 75

4.4 MatViT variants match or outperform standard ViT models on ImageNet-1K classification

and provide free extracted models that span the accuracy-compute curve through Mix’n’Match. 76

4.5 MatViT natively enables elastic encoders for adaptive retrieval that can be used for real-time

query side computation while retaining strong accuracy on ImageNet-1K, unlike the baselines. 77

5.1 The learnt threshold parameter, α = g(s), for layer 10 in 90% sparse ResNet50 on ImageNet-

1K over the course of training. 87

5.2 The progression of the learnt overall budget for 90% sparse ResNet50 on ImageNet-1K over

the course of training. 87

5.3 The final learnt threshold values, [αl]
54
l=1 = [g(sl)]

54
l=1, for all the layers in 90% sparse

ResNet50 on ImageNet-1K. 87

19

5.4 STR forms a frontier curve over all the baselines in all sparsity regimes showing that it is the

state-of-the-art for unstructured sparsity in ResNet50 on ImageNet-1K. 90

5.5 STR results in ResNet50 models on ImageNet-1K which have the lowest inference cost

(FLOPs) for any given accuracy. 92

5.6 Layer-wise sparsity budget for the 90% sparse ResNet50 models on ImageNet-1K using

various sparsification techniques. 93

5.7 Layer-wise FLOPs budget for the 90% sparse ResNet50 models on ImageNet-1K using

various sparsification techniques. 93

6.1 Discovered taxonomy over 50 classes of ImageNet-1K using the learnt 20-bit class codes. Related

species are well clustered while pushing away unrelated ones. Figure 3 in Appendix D of Kusupati

et al. [146] contains the codebook. 106

6.2 The pair-wise inner product heat maps of class representations a) learnt 20-bit codes & b) learnt

2048 dimensional real representations for the 1000 classes in ImageNet-1K. Similar sub structures

are highlighted in both heatmaps and often correspond to local hierarchy present in the classes thus

making a case that 20-bit codes distill enough information to capture hierarchy of the classes. 107

20

List of Tables

3.1 AdANNS-DiskANN using a 16-d MR + re-ranking with the 2048-d MR outperforms

DiskANN built on 2048-d RR at half the compute cost on ImageNet retrieval. 58

4.1 Inference time speed-ups over a standard 2.6B model through speculative decoding using a

1.5B (S) draft and 2.6B (XL) verifier model. 74

4.2 Fitted parameters for the scaling equation: Loss(N,D) = a · (ND)b + c 75

5.1 STR is the state-of-the-art for unstructured sparsity in ResNet50 on ImageNet-1K while having

lesser inference cost (FLOPs) than the baselines across all the sparsity regimes. ∗ and # imply

that the first and last layer are dense respectively. Baseline numbers reported from their respective

papers/open-source implementations and models. FLOPs do not include batch-norm. 91

5.2 STR is up to 3% higher in accuracy while having 33% lesser inference cost (FLOPs) for

MobileNetV1 on ImageNet-1K. 94

5.3 STR can induce learnt low-rank in FastGRNN resulting in up to 2.47% higher accuracy than

the vanilla training. 95

5.4 Effect of various layer-wise sparsity budgets when used with DNW for ResNet50 on

ImageNet-1K. 96

5.5 Effect of various layer-wise sparsity budgets when used with GMP for ResNet50 on ImageNet-

1K. 97

6.1 Classification performance on ImageNet-1K with ResNet50 using various class codebooks for training.109

6.2 Classification accuracy on ImageNet-1K vs. bit length of the learnt class codebooks (§6.5.4). 109

21

6.3 Efficient image retrieval on ImageNet-100 using AlexNet compared using MAP@1000 (Appendix B

of Kusupati et al. [146]) across 16 – 64 bits. 111

6.4 Comparison of LLC based retrieval vs real-valued representations with ResNet50 on ImageNet-100

using MAP@1000. 111

22

Chapter 1

Introduction

Modern intelligent systems are becoming increasingly monolithic, powered by gigantic foundation models

trained on trillions of tokens of web data. To democratize Artificial Intelligence (AI) systems, it is imperative

to ensure that they are not limited to running on multi-accelerator clusters but also on commodity devices like

mobile phones seamlessly. Additionally, foundation models [24] exhibit a performance disparity between

frequently encountered head tasks in the training data and less common tail tasks, necessitating their

adaptation through efficient retrieval of relevant contextual data. Furthermore, echoing human learning

principles, not all tasks are equally challenging or require the entirety of the vast web data – showcasing the

need for adaptivity. My research methodology centers on translating these concepts into practical solutions

for real-world implementation, ensuring that these intelligent systems are adaptive and can be scaled reliably

and responsibly to serve all users equitably.

With the goal of efficient, elastic and contextual intelligence – in short adaptive intelligence, I focus on

building fundamental machine learning (ML) building blocks that encompass: (1) elastic representations and

models for accurate, adaptive and efficient deployment (Chapters 2, 4 and 5) and (2) mechanisms to make

contextual data efficiently accessible to models for equitable adaptation (Chapters 3 and 6).

Chapter 2 introduces the “Matryoshka” way of packing information in a dense vector – the atomic

building block of every ML model. This chapter covers work primarily from Kusupati et al. [147] where

we proposed “Matryoshka” structure in dense vector representations to order the information from left to

right based on importance in a nested fashion. Matryoshka representation learning (MRL) [147] helps neural

23

networks output dense vectors that are inherently multi-granular by jointly optimizing the same learning

task at a select few embedding granularities. MRL helps obtain accurate low-dimensional representations of

desired quality and cost/size by taking the appropriate number of leftmost coordinates. This helps elastically

cater to downstream tasks of varying requirements like retrieval, classification, etc., in the transfer learning

paradigm. MRL is simple, scalable, and agnostic to representation learning setups, modalities, and models.

Chapter 3 covers work primarily from Rege et al. [209] where we developed approximate nearest

neighbor search (ANNS) methods that leverage the elastic embeddings for flexible search [209]. We focused

on flexibility within ANNS building blocks by leveraging the multi-granular and elastic MRL representations

for web-scale data. This helped design 2− 10× efficient ANNS indices for web data without compromising

accuracy. Now, matryoshka representations could be used at web-scale for on-the-fly adaptive and equitable

search without the need to rebuild indices across granularities.

Chapter 4 covers work primarily from Devvrit et al. [62] where we introduced elastic universal ma-

tryoshka neural network models – primarily Transformers. We developed MatFormer [62] which brought the

matryoshka structure to all of the Transformer [245] architecture. MatFormer enables extractions of 100s

of smaller accurate models for a wide range of static deployment constraints and also supports dynamic

conditional inference on-the-fly based on task hardness [218, 121, 32] and resource constraints. Additionally,

MatFormer provides smaller submodels that are inherently consistent with the universal model due to the

preservation of metric-space structure. This allows for significant speed-ups in inference time optimization of

generative language models [157] as well as enabling adaptive query encoders for large-scale retrieval for

the first time. Similar to MRL, MatFormer is domain and setup agnostic while scaling, to internet-scale, as

reliably as the default Transformer. Overall, MatFormer is a next-generation architecture that elicits elasticity

and virtualization within foundation models that form the basis of modern-day web-scale intelligent systems.

Chapter 5 takes a slight detour towards solving the problem of compute allocation across neural network

layers – which is important for the adaptive deployment of MatFormer models. This chapter primarily covers

work from Kusupati et al. [145] where we introduced the concept of learnable sparsity which was the first

end-to-end differentiable method that achieved state-of-the-art “Accuracy vs FLOPs vs Model size”.

Chapter 6 covers work from Kusupati et al. [146] where we fundamentally rethought traditional search by

learning compact binary codes for data points that double as accurate representations and efficient web-scale

24

indices. We formulated entire pipeline as a representation learning problem, through the lens of compression

and scalable instance classification, where each data point is assigned a learned low-dimensional binary

code [146]. These binary codes have the required semantic information for downstream tasks, while also

acting as a native hash-based index for all the data points. This works at scale resulting in an accurate encoding

of 1 Million images with just 20 bits per image which also serves as an extremely efficient web-scale index

for search on-demand. Rethinking search to be end-to-end differentiable and free of scaffolds [143] can result

in large amounts of data being available for offline search based on the context during deployment.

During my PhD, I also had the wonderful opportunity to work on deploying efficient ML solutions

for HCI applications[120], large-scale multi-modal models [277], better object-centric [252] and continual

learning [251], web-scale datasets for underserved tasks like 3D modeling [54] and multi-lingual NLP [139],

web-scale state-of-the-art text embeddings [154], state-of-the-art image to scene synthesis [253] and novel

autoregressive decoding algorithms [226].

I conclude with a short discussion on the real-world impact of the work presented in this thesis and talk

about future directions spanning indexing the world, contextual, and continually learning foundation models

in Chapter 7. The overarching theme of my research is to improve the building blocks of ML systems to do

more for the same resource usage with simple and scalable techniques – adaptive ML building blocks. Due

to the fundamental nature, the techniques I built, for modeling and retrieving data, work together seamlessly

and can help build truly elastic and adaptive web-scale intelligent systems to serve the users dynamically and

equitably based on task, context, and resource constraints. Finally, each of these research directions stands on

its merit in solving high-impact fundamental problems like large-scale search and efficient deployment that

have potential applications across various fields that extend beyond computer science.

25

Chapter 2

Matryoshka Representation Learning

2.1 Overview

Learned representations are a central component in modern ML systems, serving a multitude of downstream

tasks. When training such representations, it is often the case that computational and statistical constraints for

each downstream task are unknown. In this context, rigid fixed-capacity representations can be either over or

under-accommodating to the task at hand. This leads us to ask: can we design a flexible representation that

can adapt to multiple downstream tasks with varying computational resources? In this chapter, our main

contribution is Matryoshka Representation Learning (MRL) which encodes information at different

granularities and allows a single embedding to adapt to the computational constraints of downstream

tasks. MRL minimally modifies existing representation learning pipelines and imposes no additional cost

during inference and deployment. MRL learns coarse-to-fine representations that are at least as accurate

and rich as independently trained low-dimensional representations. The flexibility within the learned

Matryoshka Representations offer: (a) up to 14× smaller embedding size for ImageNet-1K classification

at the same level of accuracy; (b) up to 14× real-world speed-ups for large-scale retrieval on ImageNet-1K and

4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as

the original representations. Finally, we show that MRL extends seamlessly to web-scale datasets (ImageNet,

JFT) across various modalities – vision (ViT, ResNet), vision + language (ALIGN) and language (BERT).

MRL code and pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.

27

https://github.com/RAIVNLab/MRL

2.2 Introduction

Learned representations [153] are fundamental building blocks of real-world ML systems [190, 248]. Trained

once and frozen, d-dimensional representations encode rich information and can be used to perform multiple

downstream tasks [17]. The deployment of deep representations has two steps: (1) an expensive yet

constant-cost forward pass to compute the representation [98] and (2) utilization of the representation

for downstream applications [134, 244]. Compute costs for the latter part of the pipeline scale with the

embedding dimensionality as well as the data size (N) and label space (L). At web-scale [51, 235] this

utilization cost overshadows the feature computation cost. The rigidity in these representations forces the

use of high-dimensional embedding vectors across multiple tasks despite the varying resource and accuracy

constraints that require flexibility.

Human perception of the natural world has a naturally coarse-to-fine granularity [94, 103]. However,

perhaps due to the inductive bias of gradient-based training [232], deep learning models tend to diffuse

“information” across the entire representation vector. The desired elasticity is usually enabled in the existing

flat and fixed representations either through training multiple low-dimensional models [98], jointly optimizing

sub-networks of varying capacity [30, 275] or post-hoc compression [109, 165]. Each of these techniques

struggle to meet the requirements for adaptive large-scale deployment either due to training/maintenance

overhead, numerous expensive forward passes through all of the data, storage and memory cost for multiple

copies of encoded data, expensive on-the-fly feature selection or a significant drop in accuracy. By encoding

coarse-to-fine-grained representations, which are as accurate as the independently trained counterparts, we

learn with minimal overhead a representation that can be deployed adaptively at no additional cost during

inference.

We introduce Matryoshka Representation Learning (MRL) to induce flexibility in the learned

representation. MRL learns representations of varying capacities within the same high-dimensional vector

through explicit optimization of O(log(d)) lower-dimensional vectors in a nested fashion, hence the name

Matryoshka. MRL can be adapted to any existing representation pipeline and is easily extended to many

standard tasks in computer vision and natural language processing. Figure 2.1 illustrates the core idea

of Matryoshka Representation Learning (MRL) and the adaptive deployment settings of the learned

Matryoshka Representations.

28

Adaptive Retrieval

Shortlisting

Re-ranking

Adaptive Classification

TrainingInference

<latexit sha1_base64="eh9hk+peBkdsPY6v+r4rONmxYLY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9kVoR6LXjxWsB/QLiWbZtvQbBKSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pGJlqQttEcql7ETaUM0HblllOe0pTnEScdqPpXe53n6g2TIpHO1M0TPBYsJgRbJ3UHUjFU1MZVmt+3V8ArZOgIDUo0BpWvwYjSdKECks4NqYf+MqGGdaWEU7nlUFqqMJkise076jACTVhtjh3ji6cMkKx1K6ERQv190SGE2NmSeQ6E2wnZtXLxf+8fmrjmzBjQqWWCrJcFKccWYny39GIaUosnzmCiWbuVkQmWGNiXUJ5CMHqy+ukc1UP/HrwcF1r3hZxlOEMzuESAmhAE+6hBW0gMIVneIU3T3kv3rv3sWwtecXMKfyB9/kDBrKPWQ==</latexit>

<latexit sha1_base64="szvlzTDYQEH5M/GSBtp0D9XaTiU=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBahbkoiguKq6MaFiwr2AW0Ik8m0HTp5MDMRYqi/4saFIm79EHf+jZM2C209MHA4517umePFnEllWd9GaWV1bX2jvFnZ2t7Z3TP3DzoySgShbRLxSPQ8LClnIW0rpjjtxYLiwOO0602uc7/7QIVkUXiv0pg6AR6FbMgIVlpyzeogwGpMMEe39Uc3sy/96Ylr1qyGNQNaJnZBalCg5ZpfAz8iSUBDRTiWsm9bsXIyLBQjnE4rg0TSGJMJHtG+piEOqHSyWfgpOtaKj4aR0C9UaKb+3shwIGUaeHoyjyoXvVz8z+snanjhZCyME0VDMj80TDhSEcqbQD4TlCieaoKJYDorImMsMFG6r4ouwV788jLpnDZsq2HfndWaV0UdZTiEI6iDDefQhBtoQRsIpPAMr/BmPBkvxrvxMR8tGcVOFf7A+PwBd6WT/A==</latexit>

<latexit sha1_base64="EDzxxYGdFHE0OT/8r1yzvduiKkY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIdVOTIiiuim5cuKhgH9CGMJlM26GTBzMToYaCv+LGhSJu/Q53/o2TNgttPTBwOOde7pnjxZxJZVnfRmFpeWV1rbhe2tjc2t4xd/daMkoEoU0S8Uh0PCwpZyFtKqY47cSC4sDjtO2NrjO//UCFZFF4r8YxdQI8CFmfEay05JoHvQCrIcEc3VYe3dS+9E9rkxPXLFtVawq0SOyclCFHwzW/en5EkoCGinAsZde2YuWkWChGOJ2UeomkMSYjPKBdTUMcUOmk0/gTdKwVH/UjoV+o0FT9vZHiQMpx4OnJLKyc9zLxP6+bqP6Fk7IwThQNyexQP+FIRSjrAvlMUKL4WBNMBNNZERligYnSjZV0Cfb8lxdJq1a1rap9d1auX+V1FOEQjqACNpxDHW6gAU0gkMIzvMKb8WS8GO/Gx2y0YOQ7+/AHxucPYdOUcQ==</latexit>

<latexit sha1_base64="GlggPMD8z4lB+hiIvM4R0NcwGwo=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIdVMTKSiuim5cuKhgH9CGMJlM26GTBzMToYaCv+LGhSJu/Q53/o2TNgttPTBwOOde7pnjxZxJZVnfRmFpeWV1rbhe2tjc2t4xd/daMkoEoU0S8Uh0PCwpZyFtKqY47cSC4sDjtO2NrjO//UCFZFF4r8YxdQI8CFmfEay05JoHvQCrIcEc3VYe3dS+9E9rkxPXLFtVawq0SOyclCFHwzW/en5EkoCGinAsZde2YuWkWChGOJ2UeomkMSYjPKBdTUMcUOmk0/gTdKwVH/UjoV+o0FT9vZHiQMpx4OnJLKyc9zLxP6+bqP6Fk7IwThQNyexQP+FIRSjrAvlMUKL4WBNMBNNZERligYnSjZV0Cfb8lxdJ66xqW1X7rlauX+V1FOEQjqACNpxDHW6gAU0gkMIzvMKb8WS8GO/Gx2y0YOQ7+/AHxucPZN+Ucw==</latexit>

<latexit sha1_base64="tEtInXKd9mqmi/oFctu/VjSe+v0=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIdVMTESyuim5cuKhgH9CGMJlM26GTBzMToYaCv+LGhSJu/Q53/o2TNgttPTBwOOde7pnjxZxJZVnfRmFpeWV1rbhe2tjc2t4xd/daMkoEoU0S8Uh0PCwpZyFtKqY47cSC4sDjtO2NrjO//UCFZFF4r8YxdQI8CFmfEay05JoHvQCrIcEc3VYe3dS+9E9rkxPXLFtVawq0SOyclCFHwzW/en5EkoCGinAsZde2YuWkWChGOJ2UeomkMSYjPKBdTUMcUOmk0/gTdKwVH/UjoV+o0FT9vZHiQMpx4OnJLKyc9zLxP6+bqH7NSVkYJ4qGZHaon3CkIpR1gXwmKFF8rAkmgumsiAyxwETpxkq6BHv+y4ukdVa1rap9d16uX+V1FOEQjqACNlxAHW6gAU0gkMIzvMKb8WS8GO/Gx2y0YOQ7+/AHxucPaveUdw==</latexit>

<latexit sha1_base64="dyCsZ/ny7rQzKcXztjElUtg2QPg=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6qZORFRcFd24cFHBPqAdhkwmbUMzmSHJCHXswl9x40IRt/6GO//GTDsLrR4IHM65l3ty/JgzpR3nyyrMzS8sLhWXSyura+sb9uZWU0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+8DLzW3dUKhaJWz2KqRvivmA9RrA2kmfvdEOsBwRzeF2591J0Hhyik/GBZ5edqjMB/EtQTsogR92zP7tBRJKQCk04VqqDnFi7KZaaEU7HpW6iaIzJEPdpx1CBQ6rcdJJ/DPeNEsBeJM0TGk7UnxspDpUahb6ZzNKqWS8T//M6ie6duSkTcaKpINNDvYRDHcGsDBgwSYnmI0MwkcxkhWSAJSbaVFYyJaDZL/8lzaMqcqro5rhcu8jrKIJdsAcqAIFTUANXoA4agIAH8ARewKv1aD1bb9b7dLRg5Tvb4Besj2/eCZSw</latexit>

<latexit sha1_base64="OPHM4ACsGr0VI7qMpDgoN+t2ICI=">AAAB9XicbVDLSgMxFL3xWeur6tJNsAh1U2ZE0GXRjQsXFewD2rFk0kwbmskMSUapQ//DjQtF3Pov7vwbM+0stPVA4HDOvdyT48eCa+M432hpeWV1bb2wUdzc2t7ZLe3tN3WUKMoaNBKRavtEM8ElaxhuBGvHipHQF6zlj64yv/XAlOaRvDPjmHkhGUgecEqMle67ITHDQJERvqk8nfRKZafqTIEXiZuTMuSo90pf3X5Ek5BJQwXRuuM6sfFSogyngk2K3USzmNARGbCOpZKETHvpNPUEH1ulj4NI2ScNnqq/N1ISaj0OfTuZpdTzXib+53USE1x4KZdxYpiks0NBIrCJcFYB7nPFqBFjSwhV3GbFdEgUocYWVbQluPNfXiTN06rrVN3bs3LtMq+jAIdwBBVw4RxqcA11aAAFBc/wCm/oEb2gd/QxG11C+c4B/AH6/AGZEJHn</latexit>

Figure 2.1: Matryoshka Representation Learning is
adaptable to any representation learning setup and begets a
Matryoshka Representation z by optimizing the original loss L(.) at
O(log(d)) chosen representation sizes. Matryoshka Representation
can be utilized effectively for adaptive deployment across environments
and downstream tasks.

The first m-dimensions, m ∈ [d],

of the Matryoshka Representation is

an information-rich low-dimensional vec-

tor, at no additional training cost,

that is as accurate as an indepen-

dently trained m-dimensional represen-

tation. The information within the

Matryoshka Representation increases

with the dimensionality creating a coarse-

to-fine grained representation, all without

significant training or additional deploy-

ment overhead. MRL equips the representation vector with the desired flexibility and multifidelity that

can ensure a near-optimal accuracy-vs-compute trade-off. With these advantages, MRL enables adaptive

deployment based on accuracy and compute constraints.

The Matryoshka Representations improve efficiency for large-scale classification and retrieval with-

out any significant loss of accuracy. While there are potentially several applications of coarse-to-fine

Matryoshka Representations, in this work we focus on two key building blocks of real-world ML systems:

large-scale classification and retrieval. For classification, we use adaptive cascades with the variable-size

representations from a model trained with MRL, significantly reducing the average dimension of embeddings

needed to achieve a particular accuracy. For example, on ImageNet-1K, MRL + adaptive classification results

in up to a 14× smaller representation size at the same accuracy as baselines (Section 2.5.2). Similarly, we

use MRL in an adaptive retrieval system. Given a query, we shortlist retrieval candidates using the first few

dimensions of the query embedding, and then successively use more dimensions to re-rank the retrieved set.

A simple implementation of this approach leads to 128× theoretical (in terms of FLOPS) and 14× wall-clock

time speedups compared to a single-shot retrieval system that uses a standard embedding vector; note that

MRL’s retrieval accuracy is comparable to that of single-shot retrieval (Section 2.5.3). Finally, as MRL

explicitly learns coarse-to-fine representation vectors, intuitively it should share more semantic information

among its various dimensions (Figure 2.5). This is reflected in up to 2% accuracy gains in long-tail continual

29

learning settings while being as robust as the original embeddings. Furthermore, due to its coarse-to-fine

grained nature, MRL can also be used as method to analyze hardness of classification among instances and

information bottlenecks.

We make the following key contributions:

1. We introduce Matryoshka Representation Learning (MRL) to obtain flexible representations

(Matryoshka Representations) for adaptive deployment (Section 2.4).

2. Up to 14× faster yet accurate large-scale classification and retrieval using MRL (Section 2.5).

3. Seamless adaptation of MRL across modalities (vision - ResNet & ViT, vision + language - ALIGN,

language - BERT) and to web-scale data (ImageNet-1K/4K, JFT-300M and ALIGN data).

4. Further analysis of MRL’s representations in the context of other downstream tasks (Section 2.6).

2.3 Related Work

Representation Learning. Large-scale datasets like ImageNet [55, 215] and JFT [235] enabled the learning

of general purpose representations for computer vision [17, 270]. These representations are typically learned

through supervised and un/self-supervised learning paradigms. Supervised pretraining [98, 137, 229] casts

representation learning as a multi-class/label classification problem, while un/self-supervised learning learns

representation via proxy tasks like instance classification [268] and reconstruction [100, 181]. Recent

advances [41, 99] in contrastive learning [92] enabled learning from web-scale data [65] that powers large-

capacity cross-modal models [58, 127, 202, 277]. Similarly, natural language applications are built [112]

on large language models [27] that are pretrained [198, 214] in a un/self-supervised fashion with masked

language modelling [61] or autoregressive training [201].

Matryoshka Representation Learning (MRL) is complementary to all these setups and can be

adapted with minimal overhead (Section 2.4). MRL equips representations with multifidelity at no additional

cost which enables adaptive deployment based on the data and task (Section 2.5).

Efficient Classification and Retrieval. Efficiency in classification and retrieval during inference can be

studied with respect to the high yet constant deep featurization costs or the search cost which scales with

the size of the label space and data. Efficient neural networks address the first issue through a variety of

30

algorithms [81, 145] and design choices [111, 144, 237]. However, with a strong featurizer, most of the issues

with scale are due to the linear dependence on number of labels (L), size of the data (N) and representation

size (d), stressing RAM, disk and processor all at the same time.

The sub-linear complexity dependence on number of labels has been well studied in context of com-

pute [16, 122, 200] and memory [64] using Approximate Nearest Neighbor Search (ANNS) [179] or

leveraging the underlying hierarchy [56, 146]. In case of the representation size, often dimensionality

reduction [216, 242], hashing techniques [50, 142, 217] and feature selection [182] help in alleviating se-

lective aspects of the O(d) scaling at a cost of significant drops in accuracy. Lastly, most real-world search

systems [38, 51] are often powered by large-scale embedding based retrieval [37, 190] that scales in cost with

the ever increasing web-data. While categorization [244, 272] clusters similar things together, it is imperative

to be equipped with retrieval capabilities that can bring forward every instance [26]. Approximate Nearest

Neighbor Search (ANNS) [118] makes it feasible with efficient indexing [50] and traversal [19, 22] to present

the users with the most similar documents/images from the database for a requested query. Widely adopted

HNSW [179] (O(d log(N))) is as accurate as exact retrieval (O(dN)) at the cost of a graph-based index

overhead for RAM and disk [125].

MRL tackles the linear dependence on embedding size, d, by learning multifidelity Matryoshka Rep-

resentations. Lower-dimensional Matryoshka Representations are as accurate as independently trained

counterparts without the multiple expensive forward passes. Matryoshka Representations provide an inter-

mediate abstraction between high-dimensional vectors and their efficient ANNS indices through the adaptive

embeddings nested within the original representation vector (Section 2.5). All other aforementioned efficiency

techniques are complementary and can be readily applied to the learned Matryoshka Representations obtained

from MRL.

Several works in efficient neural network literature [30, 250, 275] aim at packing neural networks of

varying capacity within the same larger network. However, the weights for each progressively smaller

network can be different and often require distinct forward passes to isolate the final representations. This is

detrimental for adaptive inference due to the need for re-encoding the entire retrieval database with expensive

sub-net forward passes of varying capacities. Several works [70, 83, 188, 160] investigate the notions

of intrinsic dimensionality and redundancy of representations and objective spaces pointing to minimum

31

description length [212]. Finally, ordered representations proposed by Rippel et al. [211] use nested dropout

in the context of autoencoders to learn nested representations. MRL differentiates itself in formulation by

optimizing only for O(log(d)) nesting dimensions instead of O(d). Despite this, MRL diffuses information to

intermediate dimensions interpolating between the optimized Matryoshka Representation sizes accurately

(Figure 2.5); making web-scale feasible.

2.4 Matryoshka Representation Learning

For d ∈ N, consider a set M ⊂ [d] of representation sizes. For a datapoint x in the input domain X ,

our goal is to learn a d-dimensional representation vector z ∈ Rd. For every m ∈ M, Matryoshka

Representation Learning (MRL) enables each of the first m dimensions of the embedding vector, z1:m ∈ Rm

to be independently capable of being a transferable and general purpose representation of the datapoint x.

We obtain z using a deep neural network F (· ; θF) : X → Rd parameterized by learnable weights θF , i.e.,

z := F (x; θF). The multi-granularity is captured through the set of the chosen dimensionsM, that contains

less than log(d) elements, i.e., |M| ≤ ⌊log(d)⌋. The usual setM consists of consistent halving until the

representation size hits a low information bottleneck. We discuss the design choices in Section 2.5 for each

of the representation learning settings.

For the ease of exposition, we present the formulation for fully supervised representation learning via

multi-class classification. Matryoshka Representation Learning modifies the typical setting to become

a multi-scale representation learning problem on the same task. For example, we train ResNet50 [98] on

ImageNet-1K [215] which embeds a 224× 224 pixel image into a d = 2048 representation vector and then

passed through a linear classifier to make a prediction, ŷ among the L = 1000 labels. For MRL, we choose

M = {8, 16, . . . , 1024, 2048} as the nesting dimensions.

Suppose we are given a labelled dataset D = {(x1, y1), . . . , (xN , yN)} where xi ∈ X is an input point

and yi ∈ [L] is the label of xi for all i ∈ [N]. MRL optimizes the multi-class classification loss for each of

the nested dimension m ∈M using standard empirical risk minimization using a separate linear classifier,

parameterized by W(m) ∈ RL×m. All the losses are aggregated after scaling with their relative importance

32

(cm ≥ 0)m∈M respectively. That is, we solve

min
{W(m)}

m∈M, θF

1

N

∑
i∈[N]

∑
m∈M

cm · L
(
W(m) · F (xi; θF)1:m ; yi

)
, (2.1)

where L : RL × [L] → R+ is the multi-class softmax cross-entropy loss function. This is a standard

optimization problem that can be solved using sub-gradient descent methods. We set all the importance

scales, cm = 1 for all m ∈M; see Section 2.6 for ablations. Lastly, despite only optimizing for O(log(d))

nested dimensions, MRL results in accurate representations, that interpolate, for dimensions that fall between

the chosen granularity of the representations (Section 2.5.2).

We call this formulation as Matryoshka Representation Learning (MRL). A natural way to make this

efficient is through weight-tying across all the linear classifiers, i.e., by defining W(m) = W1:m for a set of

common weights W ∈ RL×d. This would reduce the memory cost due to the linear classifiers by almost half,

which would be crucial in cases of extremely large output spaces [244, 272]. This variant is called Efficient

Matryoshka Representation Learning (MRL–E). Refer to Algorithms in Appendix A of Kusupati et al.

[147] for the building blocks of Matryoshka Representation Learning (MRL).

Adaptation to Learning Frameworks. MRL can be adapted seamlessly to most representation learning

frameworks at web-scale with minimal modifications (Section 2.5.1). For example, MRL’s adaptation to

masked language modelling reduces to MRL–E due to the weight-tying between the input embedding matrix

and the linear classifier. For contrastive learning, both in context of vision & vision + language, MRL is

applied to both the embeddings that are being contrasted with each other. The presence of normalization on

the representation needs to be handled independently for each of the nesting dimension for best results (see

Appendix C of Kusupati et al. [147] for more details).

2.5 Applications

In this section, we discuss Matryoshka Representation Learning (MRL) for a diverse set of applications

along with an extensive evaluation of the learned multifidelity representations. Further, we showcase the

downstream applications of the learned Matryoshka Representations for flexible large-scale deployment

33

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Representation Size

40

50

60

70

80
To

p-
1

A
cc

ur
ac

y
(%

)

MRL
MRL-E
FF
SVD
Slim. Net
Rand. LP

Figure 2.2: ImageNet-1K linear classification ac-
curacy of ResNet50 models. MRL is as accurate
as the independently trained FF models for every
representation size.

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Representation Size

40

50

60

70

1-
N

N
 A

cc
ur

ac
y

(%
)

MRL
MRL-E
FF
SVD
Slim. Net
Rand. FS

Figure 2.3: ImageNet-1K 1-NN accuracy of
ResNet50 models measuring the representation qual-
ity for downstream task. MRL outperforms all the
baselines across all representation sizes.

through (a) Adaptive Classification (AC) and (b) Adaptive Retrieval (AR).

2.5.1 Representation Learning

We adapt Matryoshka Representation Learning (MRL) to various representation learning setups (a) Super-

vised learning for vision: ResNet50 [98] on ImageNet-1K [215] and ViT-B/16 [67] on JFT-300M [235], (b)

Contrastive learning for vision + language: ALIGN model with ViT-B/16 vision encoder and BERT language

encoder on ALIGN data [127] and (c) Masked language modelling: BERT [61] on English Wikipedia and

BooksCorpus [283]. Please refer to Appendices B and C of Kusupati et al. [147] for details regarding the

model architectures, datasets and training specifics.

We do not search for best hyper-parameters for all MRL experiments but use the same hyper-parameters

as the independently trained baselines. ResNet50 outputs a 2048-dimensional representation while ViT-B/16

and BERT-Base output 768-dimensional embeddings for each data point. We use

M = {8, 16, 32, 64, 128, 256, 512, 1024, 2048} andM = {12, 24, 48, 96, 192, 384, 768} as the explicitly

optimized nested dimensions respectively. Lastly, we extensively compare the MRL and MRL–E models to

independently trained low-dimensional (fixed feature) representations (FF), dimensionality reduction (SVD),

sub-net method (slimmable networks [275]) and randomly selected features of the highest capacity FF model.

In section 2.5.2, we evaluate the quality and capacity of the learned representations through linear

34

classification/probe (LP) and 1-nearest neighbour (1-NN) accuracy. Experiments show that MRL models

remove the dependence on |M| resource-intensive independently trained models for the coarse-to-fine

representations while being as accurate. Lastly, we show that despite optimizing only for |M| dimensions,

MRL models diffuse the information, in an interpolative fashion, across all the d dimensions providing the

finest granularity required for adaptive deployment.

2.5.2 Classification

Figure 2.2 compares the linear classification accuracy of ResNet50 models trained and evaluated on ImageNet-

1K. ResNet50–MRL model is at least as accurate as each FF model at every representation size inM while

MRL–E is within 1% starting from 16-dim. Similarly, Figure 2.3 showcases the comparison of learned

representation quality through 1-NN accuracy on ImageNet-1K (trainset with 1.3M samples as the database

and validation set with 50K samples as the queries). Matryoshka Representations are up to 2% more

accurate than their fixed-feature counterparts for the lower-dimensions while being as accurate elsewhere. 1-

NN accuracy is an excellent proxy, at no additional training cost, to gauge the utility of learned representations

in the downstream tasks.

We also evaluate the quality of the representations from training ViT-B/16 on JFT-300M alongside the

ViT-B/16 vision encoder of the ALIGN model – two web-scale setups. Due to the expensive nature of

these experiments, we only train the highest capacity fixed feature model and choose random features for

evaluation in lower-dimensions. Web-scale is a compelling setting for MRL due to its relatively inexpensive

training overhead while providing multifidelity representations for downstream tasks. Figure 2.4, evaluated

with 1-NN on ImageNet-1K, shows that all the MRL models for JFT and ALIGN are highly accurate while

providing an excellent cost-vs-accuracy trade-off at lower-dimensions. These experiments show that MRL

seamlessly scales to large-scale models and web-scale datasets while providing the otherwise prohibitively

expensive multi-granularity in the process. We also have similar observations when pretraining BERT; please

see Appendix D.2 of Kusupati et al. [147] for more details. Our experiments also show that post-hoc

compression (SVD), linear probe on random features, and sub-net style slimmable networks drastically

lose accuracy compared to MRL as the representation size decreases. Finally, Figure 2.5 shows that, while

MRL explicitly optimizes O(log(d)) nested representations – removing the O(d) dependence [211] –, the

35

12 24 48 96 19
2

38
4

76
8

Representation Size

20

40

60

80
1-

N
N

 A
cc

ur
ac

y
(%

)

JFT MRL
ALIGN MRL
JFT MRL-E
JFT Rand.
ALIGN Rand.

Figure 2.4: ImageNet-1K 1-NN accuracy for ViT-
B/16 models trained on JFT-300M & as part of
ALIGN. MRL scales seamlessly to web-scale with
minimal training overhead.

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Representation Size

50

60

70

1-
NN

 A
cc

ur
ac

y
(%

)

ViT-ALIGN
ViT-JFT
RN50-IN1K
ViT-ALIGN-Int
ViT-JFT-Int
RN50-IN1K-Int

Figure 2.5: Despite optimizing MRL only for
O(log(d)) dimensions for ResNet50 and ViT-B/16
models; the accuracy in the intermediate dimensions
shows interpolating behaviour.

coarse-to-fine grained information is interpolated across all d dimensions providing highest flexibility for

adaptive deployment.

Adaptive Classification

The flexibility and coarse-to-fine granularity within Matryoshka Representations allows model cascades [246]

for Adaptive Classification (AC) [94]. Unlike standard model cascades [258], MRL does not require multiple

expensive neural network forward passes. To perform AC with an MRL trained model, we learn thresholds

on the maximum softmax probability [104] for each nested classifier on a holdout validation set. We then use

these thresholds to decide when to transition to the higher dimensional representation (e.g 8→ 16→ 32)

of the MRL model. Appendix D.1 of Kusupati et al. [147] discusses the implementation and learning of

thresholds for cascades used for adaptive classification in detail.

Figure 2.6 shows the comparison between cascaded MRL representations (MRL–AC) and independently

trained fixed feature (FF) models on ImageNet-1K with ResNet50. We computed the expected representation

size for MRL–AC based on the final dimensionality used in the cascade. We observed that MRL–AC was

as accurate, 76.30%, as a 512-dimensional FF model but required an expected dimensionality of ∼ 37

while being only 0.8% lower than the 2048-dimensional FF baseline. Note that all MRL–AC models are

significantly more accurate than the FF baselines at comparable representation sizes. MRL–AC uses up to

∼ 14× smaller representation size for the same accuracy which affords computational efficiency as the label

space grows [244]. Lastly, our results with MRL–AC indicate that instances and classes vary in difficulty

36

which we analyze in Section 2.6 and Appendix J of Kusupati et al. [147].

2.5.3 Retrieval

Nearest neighbour search with learned representations powers a plethora of retrieval and search applica-

tions [51, 248, 38, 190]. In this section, we discuss the image retrieval performance of the pretrained ResNet50

models (Section 2.5.1) on two large-scale datasets ImageNet-1K [215] and ImageNet-4K. ImageNet-1K has a

database size of ∼1.3M and a query set of 50K samples uniformly spanning 1000 classes. We also introduce

ImageNet-4K which has a database size of ∼4.2M and query set of ∼200K samples uniformly spanning

4202 classes (see Appendix B of Kusupati et al. [147] for details). A single forward pass on ResNet50 costs

4 GFLOPs while exact retrieval costs 2.6 GFLOPs per query for ImageNet-1K. Although retrieval overhead

is 40% of the total cost, retrieval cost grows linearly with the size of the database. ImageNet-4K presents a

retrieval benchmark where the exact search cost becomes the computational bottleneck (8.6 GFLOPs per

query). In both these settings, the memory and disk usage are also often bottlenecked by the large databases.

However, in most real-world applications exact search, O(dN), is replaced with an approximate nearest

neighbor search (ANNS) method like HNSW [179], O(d log(N)), with minimal accuracy drop at the cost of

additional memory overhead.

The goal of image retrieval is to find images that belong to the same class as the query using representations

obtained from a pretrained model. In this section, we compare retrieval performance using mean Average

Precision @ 10 (mAP@10) which comprehensively captures the setup of relevant image retrieval at scale.

We measure the cost per query using exact search in MFLOPs. All embeddings are unit normalized and

retrieved using the L2 distance metric. Lastly, we report an extensive set of metrics spanning mAP@k and

P@k for k = {10, 25, 50, 100} and real-world wall-clock times for exact search and HNSW. See Appendices

E and F of Kusupati et al. [147] for more details.

Figure 2.7 compares the mAP@10 performance of ResNet50 representations on ImageNet-1K across

dimensionalities for MRL, MRL–E, FF, slimmable networks along with post-hoc compression of vectors

using SVD and random feature selection. Matryoshka Representations are often the most accurate while

being up to 3% better than the FF baselines. Similar to classification, post-hoc compression and slimmable

network baselines suffer from significant drop-off in retrieval mAP@10 with ≤ 256 dimensions. Appendix E

37

14x smaller
representation size

Figure 2.6: Adaptive classification on MRL
ResNet50 using cascades results in 14× smaller rep-
resentation size for the same level of accuracy on
ImageNet-1K (∼ 37 vs 512 dims for 76.3%).

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Representation Size

40

45

50

55

60

65

m
A

P
@

10
 (%

)

MRL
MRL-E
FF
SVD
Slim. Net
Rand. FS

Figure 2.7: mAP@10 for Image Retrieval on
ImageNet-1K with ResNet50. MRL consistently
produces better retrieval performance over the base-
lines across all the representation sizes.

of Kusupati et al. [147] discusses the mAP@10 of the same models on ImageNet-4K.

MRL models are capable of performing accurate retrieval at various granularities without the additional

expense of multiple model forward passes for the web-scale databases. FF models also generate independent

databases which become prohibitively expense to store and switch in between. Matryoshka Representations

enable adaptive retrieval (AR) which alleviates the need to use full-capacity representations, d = 2048,

for all data and downstream tasks. Lastly, all the vector compression techniques [165, 126] used as part

of the ANNS pipelines are complimentary to Matryoshka Representations and can further improve the

efficiency-vs-accuracy trade-off.

Adaptive Retrieval

We benchmark MRL in the adaptive retrieval setting (AR) [134]. For a given query image, we obtained a

shortlist, K = 200, of images from the database using a lower-dimensional representation, e.g. Ds = 16

followed by reranking with a higher capacity representation, e.g. Dr = 2048. In real-world scenarios where

top ranking performance is the key objective, measured with mAP@k where k covers a limited yet crucial

real-estate, AR provides significant compute and memory gains over single-shot retrieval with representations

of fixed dimensionality. Finally, the most expensive part of AR, as with any retrieval pipeline, is the nearest

neighbour search for shortlisting. For example, even naive re-ranking of 200 images with 2048 dimensions

38

128x	theoretical	speed-up
14x	real-world	speed-up

8
16
32
64
128
256
512
1024
2048

Ds Dr

6x	real-world	speed-up
32x	theoretical	speed-up

(a) ImageNet-1K (b) ImageNet-4K

Figure 2.8: The trade-off between mAP@10 vs MFLOPs/Query for Adaptive Retrieval (AR) on ImageNet-
1K (left) and ImageNet-4K (right). Every combination of Ds & Dr falls above the Pareto line (orange dots)
of single-shot retrieval with a fixed representation size while having configurations that are as accurate while
being up to 14× faster in real-world deployment. Funnel retrieval is almost as accurate as the baseline while
alleviating some of the parameter choices of Adaptive Retrieval.

only costs 400 KFLOPs. While we report exact search cost per query for all AR experiments, the shortlisting

component of the pipeline can be sped-up using ANNS (HNSW). Appendix I of Kusupati et al. [147] has a

detailed discussion on compute cost for exact search, memory overhead of HNSW indices and wall-clock

times for both implementations. We note that using HNSW with 32 neighbours for shortlisting does not

decrease accuracy during retrieval.

Figure 2.8 showcases the compute-vs-accuracy trade-off for adaptive retrieval using Matryoshka Repre-

sentations compared to single-shot using fixed features with ResNet50 on ImageNet-1K. We observed that

all AR settings lied above the Pareto frontier of single-shot retrieval with varying representation sizes. In

particular for ImageNet-1K, we show that the AR model with Ds = 16 & Dr = 2048 is as accurate as single-

shot retrieval with d = 2048 while being ∼ 128× more efficient in theory and ∼ 14× faster in practice

(compared using HNSW on the same hardware). We show similar trends with ImageNet-4K, but note that we

require Ds = 64 given the increased difficulty of the dataset. This results in∼ 32× and∼ 6× theoretical and

in-practice speedups respectively. Lastly, while K = 200 works well for our adaptive retrieval experiments,

we ablated over the shortlist size k in Appendix K.2 of Kusupati et al. [147] and found that the accuracy

gains stopped after a point, further strengthening the use-case for Matryoshka Representation Learning

and adaptive retrieval.

Even with adaptive retrieval, it is hard to determine the choice of Ds & Dr. In order to alleviate this issue

to an extent, we propose Funnel Retrieval, a consistent cascade for adaptive retrieval. Funnel thins out the

39

initial shortlist by a repeated re-ranking and shortlisting with a series of increasing capacity representations.

Funnel halves the shortlist size and doubles the representation size at every step of re-ranking. For example

on ImageNet-1K, a funnel with the shortlist progression of 200→ 100→ 50→ 25→ 10 with the cascade

of 16 → 32 → 64 → 128 → 256 → 2048 representation sizes within Matryoshka Representation is as

accurate as the single-shot 2048-dim retrieval while being ∼ 128× more efficient theoretically (see Appendix

F of Kusupati et al. [147] for more results). All these results showcase the potential of MRL and AR for

large-scale multi-stage search systems [51].

2.6 Further Analysis and Ablations

Robustness. We evaluate the robustness of the MRL models trained on ImageNet-1K on out-of-domain

datasets, ImageNetV2/R/A/Sketch [207, 106, 107, 254], and compare them to the FF baselines. Table 17 in

Appendix H of Kusupati et al. [147] demonstrates that Matryoshka Representations for classification are

at least as robust as the original representation while improving the performance on ImageNet-A by 0.6% – a

20% relative improvement. We also study the robustness in the context of retrieval by using ImageNetV2

as the query set for ImageNet-1K database. Table 9 in Appendix E of Kusupati et al. [147] shows that

MRL models have more robust retrieval compared to the FF baselines by having up to 3% higher mAP@10

performance. This observation also suggests the need for further investigation into robustness using nearest

neighbour based classification and retrieval instead of the standard linear probing setup. We also find that

the zero-shot robustness of ALIGN-MRL (Table 18 in Appendix H of Kusupati et al. [147]) agrees with the

observations made by Wortsman et al. [267]. Lastly, Table 6 in Appendix D.2 of Kusupati et al. [147] shows

that MRL also improves the cosine similarity span between positive and random image-text pairs.

Few-shot and Long-tail Learning. We exhaustively evaluated few-shot learning on MRL models using

nearest class mean [219]. Table 15 in Appendix G of Kusupati et al. [147] shows that that representations

learned through MRL perform comparably to FF representations across varying shots and number of classes.

Matryoshka Representations realize a unique pattern while evaluating on FLUID [249], a long-tail

sequential learning framework. We observed that MRL provides up to 2% accuracy higher on novel

classes in the tail of the distribution, without sacrificing accuracy on other classes (Table 16 in Appendix G

40

(a
)

(b
)

(c
)

Figure 2.9: Grad-CAM [224] progression of predictions in MRL model across 8, 16, 32 and 2048 dimen-
sions. (a) 8-dimensional representation confuses due to presence of other relevant objects (with a larger field
of view) in the scene and predicts “shower cap” ; (b) 8-dim model confuses within the same super-class
of “boa” ; (c) 8 and 16-dim models incorrectly focus on the eyes of the doll ("sunglasses") and not the
"sweatshirt" which is correctly in focus at higher dimensions; MRL fails gracefully in these scenarios and
shows potential use cases of disagreement across dimensions.

of Kusupati et al. [147]). Additionally we find the accuracy between low-dimensional and high-dimensional

representations is marginal for pretrain classes. We hypothesize that the higher-dimensional representations

are required to differentiate the classes when few training examples of each are known. This results provides

further evidence that different tasks require varying capacity based on their difficulty.

Disagreement across Dimensions. The information packing in Matryoshka Representations often results

in gradual increase of accuracy with increase in capacity. However, we observed that this trend was not

ubiquitous and certain instances and classes were more accurate when evaluated with lower-dimensions

(Figure 12 in Appendix J of Kusupati et al. [147]). With perfect routing of instances to appropriate dimension,

MRL can gain up to 4.6% classification accuracy. At the same time, the low-dimensional models are less

41

accurate either due to confusion within the same superclass [71] of the ImageNet hierarchy or presence of

multiple objects of interest. Figure 2.9 showcases 2 such examples for 8-dimensional representation. These

results along with Appendix J of Kusupati et al. [147] put forward the potential for MRL to be a systematic

framework for analyzing the utility and efficiency of information bottlenecks.

Superclass Accuracy. As the information bottleneck becomes smaller, the overall accuracy on fine-

grained classes decreases rapidly (Figure 2.3). However, the drop-off is not as significant when evaluated

at a superclass level (Table 24 in Appendix J of Kusupati et al. [147]). Figure 2.10 presents that this

phenomenon occurs with both MRL and FF models; MRL is more accurate across dimensions. This shows

that tight information bottlenecks while not highly accurate for fine-grained classification, do capture required

semantic information for coarser classification that could be leveraged for adaptive routing for retrieval and

classification. Mutifidelity of Matryoshka Representation naturally captures the underlying hierarchy of

the class labels with one single model. Lastly, Figure 2.11 showcases the accuracy trends per superclass with

MRL. The utility of additional dimensions in distinguishing a class from others within the same superclass is

evident for “garment” which has up to 11% improvement for 8→ 16 dimensional representation transition.

We also observed that superclasses such as “oscine (songbird)” had a clear visual distinction between the

object and background and thus predictions using 8 dimensions also led to a good inter-class separability

within the superclass.

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Representation Size

84

86

88

90

To
p-

1
A

cc
ur

ac
y

(%
) MRL

FF

Figure 2.10: 31-way ImageNet-1K superclass clas-
sification across representation size for MRL & FF
models showing the capture of underlying hierarchy
through tight information bottlenecks.

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Representation Size

65
70
75
80
85
90
95

To
p-

1
Ac

cu
ra

cy
 (%

)

measuring device
building
garment
tool
nourishment
protective covering
vessel
oscine

Figure 2.11: Diverse per-superclass accuracy trends
across representation sizes for ResNet50-MRL on
ImageNet-1K.

42

2.6.1 Ablations

Table 26 in Appendix K of Kusupati et al. [147] presents that Matryoshka Representations can be enabled

within off-the-shelf pretrained models with inexpensive partial finetuning thus paving a way for ubiquitous

adoption of MRL. At the same time, Table 27 in Appendix C of Kusupati et al. [147] indicates that with

optimal weighting of the nested losses we could improve accuracy of lower-dimensions representations

without accuracy loss. Tables 28 and 29 in Appendix C of Kusupati et al. [147] ablate over the choice of

initial granularity and spacing of the granularites. Table 28 reaffirms the design choice to shun extremely low

dimensions that have poor classification accuracy as initial granularity for MRL while Table 29 confirms the

effectiveness of logarthmic granularity spacing inspired from the behaviour of accuracy saturation across

dimensions over uniform. Lastly, Tables 30 and 31 in Appendix K.2 show that the retrieval performance

saturates after a certain shortlist dimension and length depending on the complexity of the dataset.

2.7 Discussion and Conclusions

The results in Section 2.6.1 reveal interesting weaknesses of MRL that would be logical directions for

future work. (1) Optimizing the weightings of the nested losses to obtain a Pareto optimal accuracy-vs-

efficiency trade-off – a potential solution could emerge from adaptive loss balancing aspects of anytime

neural networks [114]. (2) Using different losses at various fidelities aimed at solving a specific aspect of

adaptive deployment – e.g. high recall for 8-dimension and robustness for 2048-dimension. (3) Learning a

search data-structure, like differentiable k-d tree, on top of Matryoshka Representation to enable dataset

and representation aware retrieval. (4) Finally, the joint optimization of multi-objective MRL combined with

end-to-end learnable search data-structure to have data-driven adaptive large-scale retrieval for web-scale

search applications.

In conclusion, we presented Matryoshka Representation Learning (MRL), a flexible representation

learning approach that encodes information at multiple granularities in a single embedding vector. This

enables the MRL to adapt to a downstream task’s statistical complexity as well as the available compute

resources. We demonstrate that MRL can be used for large-scale adaptive classification as well as adaptive

retrieval. On standard benchmarks, MRL matches the accuracy of the fixed-feature baseline despite using

43

14× smaller representation size on average. Furthermore, the Matryoshka Representation based adaptive

shortlisting and re-ranking system ensures comparable mAP@10 to the baseline while being 128× cheaper

in FLOPs and 14× faster in wall-clock time. Finally, most of the efficiency techniques for model inference

and vector search are complementary to MRL further assisting in deployment at the compute-extreme

environments.

44

Chapter 3

AdANNS: A Framework for Adaptive

Semantic Search

3.1 Overview

Web-scale search systems learn an encoder to embed a given query which is then hooked into an approximate

nearest neighbor search (ANNS) pipeline to retrieve similar data points. To accurately capture tail queries and

data points, learned representations typically are rigid, high-dimensional vectors that are generally used as-is

in the entire ANNS pipeline and can lead to computationally expensive retrieval. In this chapter, we argue that

instead of rigid representations, different stages of ANNS can leverage adaptive representations of varying

capacities to achieve significantly better accuracy-compute trade-offs, i.e., stages of ANNS that can get away

with more approximate computation should use a lower-capacity representation of the same data point. To

this end, we introduce AdANNS , a novel ANNS design framework that explicitly leverages the flexibility

of Matryoshka Representations [147] introduced in Chapter 2. We demonstrate state-of-the-art accuracy-

compute trade-offs using novel AdANNS-based key ANNS building blocks like search data structures

(AdANNS-IVF) and quantization (AdANNS-OPQ). For example on ImageNet retrieval, AdANNS-IVF is

up to 1.5% more accurate than the rigid representations-based IVF [230] at the same compute budget; and

matches accuracy while being up to 90× faster in wall-clock time. For Natural Questions, 32-byte AdANNS-

OPQ matches the accuracy of the 64-byte OPQ baseline [80] constructed using rigid representations – same

45

accuracy at half the cost! We further show that the gains from AdANNS translate to modern-day composite

ANNS indices that combine search structures and quantization. Finally, we demonstrate that AdANNS

can enable inference-time adaptivity for compute-aware search on ANNS indices built non-adaptively on

matryoshka representations. Code is open-sourced at https://github.com/RAIVNLab/AdANNS.

3.2 Introduction

Semantic search [128] on learned representations [190, 191, 248] is a major component in retrieval pipelines [26,

51]. In its simplest form, semantic search methods learn a neural network to embed queries as well as a

large number (N) of data points in a d-dimensional vector space. For a given query, the nearest (in embed-

ding space) point is retrieved using either an exact search or using approximate nearest neighbor search

(ANNS) [118] which is now indispensable for real-time large-scale retrieval.

Existing semantic search methods learn fixed or rigid representations (RRs), also referred to as fixed

features (FFs) previously, which are used as is in all the stages of ANNS (data structures for data pruning

and quantization for cheaper distance computation; see Section 3.3). That is, while ANNS indices allow a

variety of parameters for searching the design space to optimize the accuracy-compute trade-off, the provided

data dimensionality is typically assumed to be an immutable parameter. To make it concrete, let us consider

inverted file index (IVF) [230], a popular web-scale ANNS technique [89]. IVF has two stages (Section 3.4)

during inference: (a) cluster mapping: mapping the query to a cluster of data points [172], and (b) linear

scan: distance computation w.r.t all points in the retrieved cluster to find the nearest neighbor (NN). Standard

IVF utilizes the same high-dimensional RR for both phases, which can be sub-optimal.

Why the sub-optimality? Imagine one needs to partition a dataset into k clusters for IVF and the

dimensionality of the data is d – IVF uses full d representation to partition into k clusters. However, suppose

we have an alternate approach that somehow projects the data in d/2 dimensions and learns 2k clusters. Note

that the storage and computation to find the nearest cluster remains the same in both cases, i.e., when we

have k clusters of d dimensions or 2k clusters of d/2 dimensions. 2k clusters can provide significantly more

refined partitioning, but the distances computed between queries and clusters could be significantly more

inaccurate after projection to d/2 dimensions.

So, if we can find a mechanism to obtain a d/2-dimensional representation of points that can accurately

46

https://github.com/RAIVNLab/AdANNS

0.05 0.5 1 10
Search Latency/Query (ms)

69.0

69.5

70.0

70.5
To

p-
1

Ac
cu

ra
cy

 (%
)

~1.5% gain

~90× real-world speed-up

AdANNS-IVF
Rigid-IVF

(a) Image retrieval on ImageNet-1K.

32 48 64 96
Compute Budget (Bytes)

40

42

44

46

To
p-

1
Ac

cu
ra

cy
 (%

)

~3% gain

2× cheaper

AdANNS-OPQ
Rigid-OPQ

(b) Passage retrieval on Natural Questions.

Figure 3.1: AdANNS helps design search data structures and quantization methods with better accuracy-
compute trade-offs than the existing solutions. In particular, (a) AdANNS-IVF improves on standard IVF
by up to 1.5% in accuracy while being 90× faster in deployment and (b) AdANNS-OPQ is as accurate
as the baseline at half the cost! Rigid-IVF and Rigid-OPQ are standard techniques that are built on rigid
representations (RRs) while AdANNS uses matryoshka representations (MRs) [147].

approximate the topology/distances of d-dimensional representation, then we can potentially build signif-

icantly better ANNS structure that utilizes different capacity representations for the cluster mapping and

linear scan phases of IVF. But how do we find such adaptive representations? These desired adaptive repre-

sentations should be cheap to obtain and still ensure distance preservation across dimensionality. Post-hoc

dimensionality reduction techniques like SVD [82] and random projections [129] on high-dimensional RRs

are potential candidates, but our experiments indicate that in practice they are highly inaccurate and do not

preserve distances well enough (Figure 3.2).

Instead, we identify that the recently proposed Matryoshka Representations (MRs) [147] satisfy the

specifications for adaptive representations. Matryoshka representations pack information in a hierarchical

nested manner, i.e., the first m-dimensions of the d-dimensional MR form an accurate low-dimensional

representation while being aware of the information in the higher dimensions. This allows us to deploy MRs

in two major and novel ways as part of ANNS: (a) low-dimensional representations for accuracy-compute

optimal clustering and quantization, and (b) high-dimensional representations for precise re-ranking when

feasible.

To this effort, we introduce AdANNS , a novel design framework for semantic search that uses ma-

tryoshka representation-based adaptive representations across different stages of ANNS to ensure significantly

47

better accuracy-compute trade-off than the state-of-the-art baselines.

Typical ANNS systems have two key components: (a) search data structure to store datapoints, (b)

distance computation to map a given query to points in the data structure. Through AdANNS, we address

both these components and significantly improve their performance. In particular, we first propose AdANNS-

IVF (Section 3.5.1) which tackles the first component of ANNS systems. AdANNS-IVF uses standard

full-precision computations but uses adaptive representations for different IVF stages. On ImageNet 1-NN

image retrieval (Figure 3.1a), AdANNS-IVF is up to 1.5% more accurate for the compute budget and 90×

cheaper in deployment for the same accuracy as IVF.

We then propose AdANNS-OPQ (Section 3.5.2) which addresses the second component by using

AdANNS-based quantization (OPQ [80]) – here we use exhaustive search overall points. AdANNS-OPQ is

as accurate as the baseline OPQ on RRs while being at least 2× faster on Natural Questions [148] 1-NN

passage retrieval (Figure 3.1b). Finally, we combine the two techniques to obtain AdANNS-IVFOPQ (Sec-

tion 3.5.3) which is more accurate while being much cheaper – up to 8× – than the traditional IVFOPQ [128]

index. To demonstrate generality of our technique, we adapt AdANNS to DiskANN [125] which provides

interesting accuracy-compute tradeoff; see Table 3.1.

While MR already has multi-granular representations, careful integration with ANNS building blocks

is critical to obtain a practical method and is our main contribution. In fact, Kusupati et al. [147] proposed

a simple adaptive retrieval setup that uses smaller-dimensional MR for shortlisting in retrieval followed

by precise re-ranking with a higher-dimensional MR. Such techniques, unfortunately, cannot be scaled to

industrial systems as they require forming a new index for every shortlisting provided by low-dimensional

MR. Ensuring that the method aligns well with the modern-day ANNS pipelines is important as they

already have mechanisms to handle real-world constraints like load-balancing [89] and random access from

disk [125]. So, AdANNS is a step towards making the abstraction of adaptive search and retrieval feasible at

the web-scale.

Through extensive experimentation, we also show that AdANNS generalizes across search data structures,

distance approximations, modalities (text & image), and encoders (CNNs & Transformers) while still

translating the theoretical gains to latency reductions in deployment. While we have mainly focused on

IVF and OPQ-based ANNS in this work, AdANNS also blends well with other ANNS pipelines. We

48

also show that AdANNS can enable compute-aware elastic search on prebuilt indices without making any

modifications (Section 3.6.1); note that this is in contrast to AdANNS-IVF that builds the index explicitly

utilizing “adaptivity” in representations. Finally, we provide an extensive analysis on the alignment of

matryoshka representation for better semantic search (Section 3.6.2).

We make the following key contributions:

• We introduce AdANNS , a novel framework for semantic search that leverages matryoshka representa-

tions for designing ANNS systems with better accuracy-compute trade-offs.

• AdANNS powered search data structure (AdANNS-IVF) and quantization (AdANNS-OPQ) show a

significant improvement in accuracy-compute tradeoff compared to existing solutions.

• AdANNS generalizes to modern-day composite ANNS indices and can also enable compute-aware elastic

search during inference with no modifications.

3.3 Related Work

Approximate nearest neighbour search (ANNS) is a paradigm to come as close as possible [46] to retrieving the

“true” nearest neighbor (NN) without the exorbitant search costs associated with exhaustive search [118, 260].

The “approximate” nature comes from data pruning as well as the cheaper distance computation that

enable real-time web-scale search. In its naive form, NN-search has a complexity of O(dN); d is the data

dimensionality used for distance computation and N is the size of the database. ANNS employs each of these

approximations to reduce the linear dependence on the dimensionality (cheaper distance computation) and

data points visited during search (data pruning).

Cheaper distance computation. From a bird’s eye view, cheaper distance computation is always

obtained through dimensionality reduction (quantization included). PCA and SVD [82, 130] can reduce

dimensionality and preserve distances only to a limited extent without sacrificing accuracy. On the other

hand, quantization-based techniques [42, 86] like (optimized) product quantization ((O)PQ) [80, 126] have

proved extremely crucial for relatively accurate yet cheap distance computation and simultaneously reduce

the memory overhead significantly. Another naive solution is to independently train the representation

function with varying low-dimensional information bottlenecks [147] which is rarely used due to the costs of

maintaining multiple models and databases.

49

Data pruning. Enabled by various data structures, data pruning reduces the number of data points

visited as part of the search. This is often achieved through hashing [50, 217], trees [20, 78, 89, 230] and

graphs [125, 178]. More recently there have been efforts towards end-to-end learning of the search data

structures [91, 136, 146]. However, web-scale ANNS indices are often constructed on rigid d-dimensional

real vectors using the aforementioned data structures that assist with the real-time search. For a more

comprehensive review of ANNS structures please refer to [29, 163, 257].

Composite indices. ANNS pipelines often benefit from the complementary nature of various building

blocks [128, 202]. In practice, often the data structures (coarse-quantizer) like IVF [230] and HNSW [177]

are combined with cheaper distance alternatives like PQ [126] (fine-quantizer) for massive speed-ups in

web-scale search. While the data structures are built on d-dimensional real vectors, past works consistently

show that PQ can be safely used for distance computation during search time. As evident in modern web-scale

ANNS systems like DiskANN [125], the data structures are built on d-dimensional real vectors but work with

PQ vectors (32− 64-byte) for fast distance computations.

ANNS benchmark datasets. Despite the Herculean advances in representation learning [98, 202], ANNS

progress is often only benchmarked on fixed representation vectors provided for about a dozen million to

billion scale datasets [11, 228] with limited access to the raw data. This resulted in the improvement of

algorithmic design for rigid representations (RRs) that are often not specifically designed for search. All

the existing ANNS methods work with the assumption of using the provided d-dimensional representation

which might not be Pareto-optimal for the accuracy-compute trade-off in the first place. Note that the lack

of raw-image and text-based benchmarks led us to using ImageNet-1K [215] (1.3M images, 50K queries)

and Natural Questions [148] (21M passages, 3.6K queries) for experimentation. While not billion-scale, the

results observed on ImageNet often translate to real-world progress [135], and Natural Questions is one of

the largest question answering datasets benchmarked for dense passage retrieval [133], making our results

generalizable and widely applicable.

In this chapter, we investigate the utility of adaptive representations – embeddings of different dimension-

alities having similar semantic information – in improving the design of ANNS algorithms. This helps in

transitioning out of restricted construction and inference on rigid representations for ANNS. To this end, we

extensively use Matryoshka Representations (MRs) [147] which have desired adaptive properties in-built.

50

To the best of our knowledge, this is the first work that improves accuracy-compute trade-off in ANNS

by leveraging adaptive representations on different phases of construction and inference for ANNS data

structures.

3.4 Problem Setup, Notation, and Preliminaries

The problem setup of approximate nearest neighbor search (ANNS) [118] consists of a database of N data

points, [x1, x2, . . . , xN], and a query, q, where the goal is to “approximately” retrieve the nearest data point to

the query. Both the database and query are embedded to Rd using a representation function ϕ : X → Rd, often

a neural network that can be learned through various representation learning paradigms [17, 98, 99, 190, 202].

Matryoshka Representations (MRs). The d-dimensional representations from ϕ can have a nested struc-

ture like Matryoshka Representations (MRs) [147] in-built – ϕMR(d). Matryoshka Representation Learning

(MRL) learns these nested representations with a simple strategy of optimizing the same training objec-

tive at varying dimensionalities. These granularities are ordered such that the lowest representation size

forms a prefix for the higher-dimensional representations. So, high-dimensional MR inherently contains

low-dimensional representations of varying granularities that can be accessed for free – first m-dimensions

(m ∈ [d]) ie., ϕMR(d)[1 : m] from the d-dimensional MR form an m-dimensional representation which is as

accurate as its independently trained rigid representation (RR) counterpart – ϕRR(m). Training an encoder

with MRL does not involve any overhead or hyperparameter tuning and works seamlessly across modalities,

training objectives, and architectures.

Inverted File Index (IVF). IVF [230] is an ANNS data structure used in web-scale search systems [89]

owing to its simplicity, minimal compute overhead, and high accuracy. IVF construction involves clustering

(coarse quantization through k-means) [172] on d-dimensional representation that results in an inverted file

list [265] of all the data points in each cluster. During search, d-dimensional query representation is assigned

to the most relevant cluster (Ci; i ∈ [k]) by finding the closest centroid (µi) using an appropriate distance

metric (L2 or cosine). This is followed by an exhaustive linear search across all data points in the cluster

which gives the closest NN (see Figure 5 in Appendix A of Rege et al. [209] for IVF overview). Lastly, IVF

51

can scale to web-scale by utilizing a hierarchical IVF structure within each cluster [89]. Table2 in Appendix

A of Rege et al. [209] describes the retrieval formula for multiple variants of IVF.

Optimized Product Quantization (OPQ). Product Quantization (PQ) [126] works by splitting a d-

dimensional real vector into m sub-vectors and quantizing each sub-vector with an independent 2b length

codebook across the database. After PQ, each d-dimensional vector can be represented by a compact m×b bit

vector; we make each vector m bytes long by fixing b = 8. During search time, distance computation between

the query vector and PQ database is extremely efficient with only m codebook lookups. The generality of PQ

encompasses scalar/vector quantization [86, 172] as special cases. However, PQ can be further improved

by rotating the d-dimensional space appropriately to maximize distance preservation after PQ. Optimized

Product Quantization (OPQ) [80] achieves this by learning an orthonormal projection matrix R that rotates

the d-dimensional space to be more amenable to PQ. OPQ shows consistent gains over PQ across a variety of

ANNS tasks and has become the default choice in standard composite indices [125, 128].

Datasets. We evaluate the ANNS algorithms while changing the representations used for the search thus

making it impossible to evaluate on the usual benchmarks [11]. Hence we experiment with two public

datasets: (a) ImageNet-1K [215] dataset on the task of image retrieval – where the goal is to retrieve images

from a database (1.3M image train set) belonging to the same class as the query image (50K image validation

set) and (b) Natural Questions (NQ) [148] dataset on the task of question answering through dense passage

retrieval – where the goal is to retrieve the relevant passage from a database (21M Wikipedia passages) for a

query (3.6K questions).

Metrics Performance of ANNS is often measured using recall score [125], k-recall@N – recall of the exact

NN across search complexities which denotes the recall of k “true” NN when N data points are retrieved.

However, the presence of labels allows us to compute 1-NN (top-1) accuracy. Top-1 accuracy is a harder

and more fine-grained metric that correlates well with typical retrieval metrics like recall and mean average

precision (mAP@k). Even though we report top-1 accuracy by default during experimentation, we discuss

other metrics in Appendix C of Rege et al. [209]. Finally, we measure the compute overhead of ANNS using

MFLOPS/query and also provide wall-clock times (see Appendix B.1 of Rege et al. [209]).

52

Encoders. For ImageNet, we encode both the database and query set using a ResNet50 (ϕI) [98] trained on

ImageNet-1K. For NQ, we encode both the passages in the database and the questions in the query set using

a BERT-Base (ϕN) [61] model fine-tuned on NQ for dense passage retrieval [133].

We use the trained ResNet50 models with varying representation sizes (d = [8, 16, . . . , 2048]; default

being 2048) as suggested by Kusupati et al. [147] alongside the MRL-ResNet50 models trained with MRL

for the same dimensionalities. The RR and MR models are trained to ensure the supervised one-vs-all

classification accuracy across all data dimensionalities is nearly the same – 1-NN accuracy of 2048-d RR and

MR models are 71.19% and 70.97% respectively on ImageNet-1K. Independently trained models, ϕRR(d)
I ,

output d = [8, 16 . . . , 2048] dimensional RRs while a single MRL-ResNet50 model, ϕMR(d)
I , outputs a

d = 2048-dimensional MR that contains all the 9 granularities.

We also train BERT-Base models in a similar vein as the aforementioned ResNet50 models. The key

difference is that we take a pre-trained BERT-Base model and fine-tune on NQ as suggested by Karpukhin

et al. [133] with varying (5) representation sizes (bottlenecks) (d = [48, 96, . . . , 768]; default being 768)

to obtain ϕ
RR(d)
N that creates RRs for the NQ dataset. To get the MRL-BERT-Base model, we fine-tune a

pre-trained BERT-Base encoder on the NQ train dataset using the MRL objective with the same granularities

as RRs to obtain ϕ
MR(d)
N which contains all five granularities. Akin to ResNet50 models, the RR and

MR BERT-Base models on NQ are built to have similar 1-NN accuracy for 768-d of 52.2% and 51.5%

respectively. More implementation details can be found in Appendix B of Rege et al. [209] and additional

experiment-specific information is provided at the appropriate places.

3.5 AdANNS – Adaptive ANNS

In this section, we present our proposed AdANNS framework that exploits the inherent flexibility of

matryoshka representations to improve the accuracy-compute trade-off for semantic search components.

Standard ANNS pipeline can be split into two key components: (a) search data structure that indexes and

stores data points, (b) query-point computation method that outputs (approximate) distance between a given

query and data point. For example, standard IVFOPQ [128] method uses an IVF structure to index points on

full-precision vectors and then relies on OPQ for more efficient distance computation between the query and

the data points during the linear scan.

53

Below, we show that AdANNS can be applied to both the above-mentioned ANNS components and

provides significant gains on the computation-accuracy tradeoff curve. In particular, we present AdANNS-

IVF which is AdANNS version of the standard IVF index structure [230], and the closely related ScaNN

structure [89]. We also present AdANNS-OPQ which introduces representation adaptivity in the OPQ, an

industry-default quantization. Then, in Section 3.5.3 we further demonstrate the combination of the two

techniques to get AdANNS-IVFOPQ – an AdANNS version of IVFOPQ [128] – and AdANNS-DiskANN,

a similar variant of DiskANN [125]. Overall, our experiments show that AdANNS-IVF is significantly more

accuracy-compute optimal compared to the IVF indices built on RRs and AdANNS-OPQ is as accurate as

the OPQ on RRs while being significantly cheaper.

3.5.1 AdANNS-IVF

0.1 0.5 1 5
MFLOPS/Query

68.5

69.0

69.5

70.0

To
p-

1
Ac

cu
ra

cy
 (%

)

AdANNS-IVF
AdANNS-IVF-D
MG-IVF-RR
MG-IVF-SVD
IVF-MR
IVF-RR

Figure 3.2: 1-NN accuracy on ImageNet retrieval shows that
AdANNS-IVF achieves near-optimal accuracy-compute trade-
off compared across various rigid and adaptive baselines. Both
adaptive variants of MR and RR significantly outperform their
rigid counterparts (IVF-XX) while post-hoc compression on RR
using SVD for adaptivity falls short.

Recall from Section 3.2 that IVF has a

clustering and a linear scan phase, where

both phase use same dimensional rigid

representation. Now, AdANNS-IVF al-

lows the clustering phase to use the first

dc dimensions of the given matryoshka

representation (MR). Similarly, the linear

scan within each cluster uses ds dimen-

sions, where again ds represents top ds

coordinates from MR. Note that setting

dc = ds results in non-adaptive regular

IVF. Intuitively, we would set dc ≪ ds,

so that instead of clustering with a high-

dimensional representation, we can ap-

proximate it accurately with a low-dimensional embedding of size dc followed by a linear scan with a higher

ds-dimensional representation. Intuitively, this helps in the smooth search of design space for state-of-the-art

accuracy-compute trade-off. Furthermore, this can provide a precise operating point on accuracy-compute

54

tradeoff curve which is critical in several practical settings.

Our experiments on regular IVF with MRs and RRs (IVF-MR & IVF-RR) of varying dimensionalities

and IVF configurations (# clusters, # probes) show that (Figure 3.2) matryoshka representations result in a

significantly better accuracy-compute trade-off. We further studied and found that learned lower-dimensional

representations offer better accuracy-compute trade-offs for IVF than higher-dimensional embeddings (see

Appendix E of Rege et al. [209] for more results).

AdANNS utilizes d-dimensional matryoshka representation to get accurate dc and ds dimensional

vectors at no extra compute cost. The resulting AdANNS-IVF provides a much better accuracy-compute

trade-off (Figure 3.2) on ImageNet-1K retrieval compared to IVF-MR, IVF-RR, and MG-IVF-RR – multi-

granular IVF with rigid representations (akin to AdANNS without MR) – a strong baseline that uses dc

and ds dimensional RRs. Finally, we exhaustively search the design space of IVF by varying dc, ds ∈

[8, 16, . . . , 2048] and the number of clusters k ∈ [8, 16, . . . , 2048]. Please see Appendix E of Rege et al.

[209] for more details. For IVF experiments on the NQ dataset, please refer to Appendix G of Rege et al.

[209].

Empirical results. Figure 3.2 shows that AdANNS-IVF outperforms the baselines across all accuracy-

compute settings for ImageNet-1K retrieval. AdANNS-IVF results in 10× lower compute for the best

accuracy of the extremely expensive MG-IVF-RR and non-adaptive IVF-MR. Specifically, as shown in

Figure 3.1a, AdANNS-IVF is up to 1.5% more accurate for the same compute and has up to 100× lesser

FLOPS/query (90× real-world speed-up!) than the status quo ANNS on rigid representations (IVF-RR). We

filter out points for the sake of presentation and encourage the reader to check out Figure 8 in Appendix E

of Rege et al. [209] for an expansive plot of all the configurations searched.

The advantage of AdANNS for construction of search structures is evident from the improvements in IVF

(AdANNS-IVF) and can be easily extended to other ANNS structures like ScaNN [89] and HNSW [178].

For example, HNSW consists of multiple layers with graphs of NSW graphs [177] of increasing complexity.

AdANNS can be adopted to HNSW, where the construction of each level can be powered by appropriate

dimensionalities for an optimal accuracy-compute trade-off. In general, AdANNS provides fine-grained con-

trol over compute overhead (storage, working memory, inference, and construction cost) during construction

and inference while providing the best possible accuracy.

55

3.5.2 AdANNS-OPQ

Standard Product Quantization (PQ) essentially performs block-wise vector quantization via clustering. For

example, suppose we need 32-byte PQ compressed vectors from the given 2048 dimensional representations.

Then, we can chunk the representations in m = 32 equal blocks/sub-vectors of 64-d each, and each sub-vector

space is clustered into 28 = 256 partitions. That is, the representation of each point is essentially cluster-id

for each block. Optimized PQ (OPQ) [80] further refines this idea, by first rotating the representations using

a learned orthogonal matrix, and then applying PQ on top of the rotated representations. In ANNS, OPQ

is used extensively to compress vectors and improves approximate distance computation primarily due to

significantly lower memory overhead than storing full-precision data points IVF.

AdANNS-OPQ utilizes MR representations to apply OPQ on lower-dimensional representations. That

is, for a given quantization budget, AdANNS allows using top ds ≪ d dimensions from MR and then

computing clusters with ds/m-dimensional blocks where m is the number of blocks. Depending on ds and

m, we have further flexibility of trading-off dimensionality/capacity for increasing the number of clusters to

meet the given quantization budget. AdANNS-OPQ tries multiple ds, m, and number of clusters for a fixed

quantization budget to obtain the best performing configuration.

We experimented with 8 − 128 byte OPQ budgets for both ImageNet and Natural Questions retrieval

with an exhaustive search on the quantized vectors. We compare AdANNS-OPQ which uses MRs of varying

granularities to the baseline OPQ built on the highest dimensional RRs. We also evaluate OPQ vectors

obtained projection using SVD [82] on top of the highest-dimensional RRs.

Empirical results. Figures 3.3 and 3.1b show that AdANNS-OPQ significantly outperforms – up to 4%

accuracy gain – the baselines (OPQ on RRs) across compute budgets on both ImageNet and NQ. In particular,

AdANNS-OPQ tends to match the accuracy of a 64-byte (a typical choice in ANNS) OPQ baseline with only

a 32-byte budget. This results in a 2× reduction in both storage and compute FLOPS which translates to

significant gains in real-world web-scale deployment (see Appendix D of Rege et al. [209]).

We only report the best AdANNS-OPQ for each budget typically obtained through a much lower-

dimensional MR (128 & 192; much faster to build as well) than the highest-dimensional MR (2048 & 768)

for ImageNet and NQ respectively (see Appendix G of Rege et al. [209] for more details). At the same time,

56

we note that building compressed OPQ vectors on projected RRs using SVD to the smaller dimensions (or

using low-dimensional RRs, see Appendix D of Rege et al. [209]) as the optimal AdANNS-OPQ does not

help in improving the accuracy. The significant gains we observe in AdANNS-OPQ are purely due to better

information packing in MRs – we hypothesize that packing the most important information in the initial

coordinates results in a better PQ quantization than RRs where the information is uniformly distributed

across all the dimensions [147, 232]. See Appendix D of Rege et al. [209] for more details and experiments.

3.5.3 AdANNS for Composite Indices

We now extend AdANNS to composite indices [128] which put together two main ANNS building blocks –

search structures and quantization – together to obtain efficient web-scale ANNS indices used in practice. A

simple instantiation of a composite index would be the combination of IVF and OPQ – IVFOPQ – where

the clustering in IVF happens with full-precision real vectors but the linear scan within each cluster is

approximated using OPQ-compressed variants of the representation – since often the full-precision vectors of

the database cannot fit in RAM. Contemporary ANNS indices like DiskANN [125] make this a default choice

where they build the search graph with a full-precision vector and approximate the distance computations

during search with an OPQ-compressed vector to obtain a very small shortlist of retrieved datapoints. In

16 32 64
Compute Budget (Bytes)

67

68

69

70

71

To
p-

1
Ac

cu
ra

cy
 (%

)

AdANNS-OPQ
OPQ-RR
OPQ-RR-SVD

Figure 3.3: AdANNS-OPQ matches the accuracy
of 64-byte OPQ on RR using only 32-bytes for Im-
ageNet retrieval. AdANNS provides large gains at
lower compute budgets and saturates to baseline per-
formance for larger budgets.

8 16 32 64
Compute Budget (Bytes)

65

66

67

68

69

70

To
p-

1
Ac

cu
ra

cy
 (%

)

AdANNS-IVFOPQ
Rigid-IVFOPQ

Figure 3.4: Combining the gains of AdANNS for
IVF and OPQ leads to better IVFOPQ composite
indices. On ImageNet retrieval, AdANNS-IVFOPQ
is 8× cheaper for the same accuracy and provides 1
- 4% gains over IVFOPQ on RRs.

57

DiskANN, the shortlist of data points is then re-ranked to form the final list using their full-precision vectors

fetched from the disk. AdANNS is naturally suited to this shortlist-rerank framework: we use a low-d MR

for forming index, where we could tune AdANNS parameters according to the accuracy-compute trade-off

of the graph and OPQ vectors. We then use a high-dMR for re-ranking.

Table 3.1: AdANNS-DiskANN using a 16-d MR + re-ranking
with the 2048-dMR outperforms DiskANN built on 2048-d RR
at half the compute cost on ImageNet retrieval.

RR-2048 AdANNS

PQ Budget (Bytes) 32 16

Top-1 Accuracy (%) 70.37 70.56

mAP@10 (%) 62.46 64.70

Precision@40 (%) 65.65 68.25

Empirical results. Figure 3.4 shows

that AdANNS-IVFOPQ is 1 − 4% bet-

ter than the baseline at all the PQ com-

pute budgets. Furthermore, AdANNS-

IVFOPQ has the same accuracy as the

baselines at 8× lower overhead. With

DiskANN, AdANNS accelerates short-

list generation by using low-dimensional

representations and recoups the accuracy

by re-ranking with the highest-dimensional MR at negligible cost. Table 3.1 shows that AdANNS-DiskANN

is more accurate than the baseline for both 1-NN and ranking performance at only half the cost. Using

low-dimensional representations further speeds up inference in AdANNS-DiskANN (see Appendix F of Rege

et al. [209]).

These results show the generality of AdANNS and its broad applicability across a variety of ANNS

indices built on top of the base building blocks. Currently, AdANNS piggybacks on typical ANNS pipelines

for their inherent accounting of the real-world system constraints [89, 125, 129]. However, we believe

that AdANNS’s flexibility and significantly better accuracy-compute trade-off can be further informed by

real-world deployment constraints. We leave this high-potential line of work that requires extensive study to

future research.

58

3.6 Further Analysis and Discussion

3.6.1 Compute-aware Elastic Search During Inference

AdANNS search structures cater to many specific large-scale use scenarios that need to satisfy precise

resource constraints during construction as well as inference. However, in many cases, construction and

storage of the indices are not the bottlenecks or the user is unable to search the design space. In these

settings, AdANNS-D enables adaptive inference through accurate yet cheaper distance computation using

the low-dimensional prefix of matryoshka representation. Akin to composite indices (Section 3.5.3) that

use PQ vectors for cheaper distance computation, we can use the low-dimensional MR for faster distance

computation on ANNS structure built non-adaptively with a high-dimensional MR without any modifications

to the existing index.

Empirical results. Figure 3.2 shows that for a given compute budget using IVF on ImageNet-1K retrieval,

AdANNS-IVF is better than AdANNS-IVF-D due to the explicit control during the building of the ANNS

structure which is expected. However, the interesting observation is that AdANNS-D matches or outperforms

the IVF indices built with MRs of varying capacities for ImageNet retrieval.

However, these methods are applicable in specific scenarios of deployment. Obtaining optimal AdANNS

search structure (highly accurate) or even the best IVF-MR index relies on a relatively expensive design

search but delivers indices that fit the storage, memory, compute, and accuracy constraints all at once. On the

other hand AdANNS-D does not require a precisely built ANNS index but can enable compute-aware search

during inference. AdANNS-D is a great choice for setups that can afford only one single database/index but

need to cater to varying deployment constraints, e.g., one task requires 70% accuracy while another task has

a compute budget of 1 MFLOPS/query.

3.6.2 Why MRs over RRs?

Quite a few of the gains from AdANNS are owing to the quality and capabilities of matryoshka representa-

tions. So, we conducted extensive analysis to understand why matryoshka representations seem to be more

aligned for semantic search than the status-quo rigid representations.

Difficulty of NN search. Relative contrast (Cr) [97] is inversely proportional to the difficulty of nearest

59

neighbor search on a given database. On ImageNet-1K, Figure 14 of Rege et al. [209] shows that MRs have

better Cr than RRs across dimensionalities, further supporting that matryoshka representations are more

aligned (easier) for NN search than existing rigid representations for the same accuracy. More details and

analysis about this experiment can be found in Appendix H.2 of Rege et al. [209] .

Clustering distributions. We also investigate the potential deviation in clustering distributions for MRs

across dimensionalities compared to RRs. Unlike the RRs where the information is uniformly diffused

across dimensions [232], MRs have hierarchical information packing. Figure 11 in Appendix E.3 of Rege

et al. [209] shows that matryoshka representations result in clusters similar (measured by total variation

distance [158]) to that of rigid representations and do not result in any unusual artifacts.

Robustness. Figure 9 in Appendix E of Rege et al. [209] shows that MRs continue to be better than

RRs even for out-of-distribution (OOD) image queries (ImageNetV2 [207]) using ANNS. It also shows that

the highest data dimensionality need not always be the most robust which is further supported by the higher

recall using lower dimensions. Further details about this experiment can be found in Appendix E.1 of Rege

et al. [209].

Generality across encoders. IVF-MR consistently has higher accuracy than IVF-RR across dimension-

alities despite having similar accuracies with exact NN search (for ResNet50 on ImageNet and BERT-Base

on NQ). We find that our observations on better alignment of MRs for NN search hold across neural network

architectures, ResNet18/34/101 [98] and ConvNeXt-Tiny [171]. Appendix H.3 of Rege et al. [209] delves

deep into the experimentation done using various neural architectures on ImageNet-1K.

Recall score analysis. Analysis of recall score (see Appendix C of Rege et al. [209]) in Appendix H.1

of Rege et al. [209] shows that for a similar top-1 accuracy, lower-dimensional representations have better

1-Recall@1 across search complexities for IVF and HNSW on ImageNet-1K. Across the board, MRs have

higher recall scores and top-1 accuracy pointing to easier “searchability” and thus suitability of matryoshka

representations for ANNS. Larger-scale experiments and further analysis can be found in Appendix H of Rege

et al. [209].

Through these analyses, we argue that matryoshka representations are better suited for semantic search

than rigid representations, thus making them an ideal choice for AdANNS.

60

3.6.3 Search for AdANNS Hyperparameters

Choosing the optimal hyperparameters for AdANNS, such as dc, ds, m, # clusters, # probes, is an interesting

and open problem that requires more rigorous examination. As the ANNS index is formed once and used

for potentially billions of queries with massive implications for cost, latency and queries-per-second, a

hyperparameter search for the best index is generally an acceptable industry practice [125, 178]. The Faiss

library [128] provides guidelines1 to choose the appropriate index for a specific problem, including memory

constraints, database size, and the need for exact results. There have been efforts at automating the search for

optimal indexing parameters, such as Autofaiss2, which maximizes recall given compute constraints.

In case of AdANNS, we suggest starting at the best configurations of MRs followed by a local design

space search to lead to near-optimal AdANNS configurations (e.g. use IVF-MR to bootstrap AdANNS-IVF).

We also share some observations during the course of our experiments:

1. AdANNS-IVF: Top-1 accuracy generally improves (with diminishing returns after a point) with increasing

dimensionality of clustering (dc) and search (ds), as we show on ImageNet variants and with multiple

encoders in the Appendix (Figures 9 and 15) of Rege et al. [209]. Clustering with low-d MRs matches

the performance of high-d MRs as they likely contain similar amounts of useful information, making the

increased compute cost not worth the marginal gains. Increasing # probes naturally boosts performance

(Appendix, Figure 10a, of Rege et al. [209]). Lastly, it is generally accepted that a good starting point for

the # clusters k is
√
ND/2, where ND is the number of indexable items [180]. k =

√
ND is the optimal

choice of k from a FLOPS computation perspective as can be seen in Appendix B.1 of Rege et al. [209].

2. AdANNS-OPQ: we observe that for a fixed compute budget in bytes (m), the top-1 accuracy reaches a

peak at d < dmax (Appendix, Table 4, of Rege et al. [209]). We hypothesize that the better performance of

AdANNS-OPQ at d < dmax is due to the curse of dimensionality, i.e. it is easier to learn PQ codebooks

on smaller embeddings with similar amounts of information. We find that using an MR with d = 4×m

is a good starting point on ImageNet and NQ. We also suggest using an 8-bit (256-length) codebook for

OPQ as the default for each of the sub-block quantizer.

3. AdANNS-DiskANN: Our observations with DiskANN are consistent with other indexing structures, i.e.
1https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
2https://github.com/criteo/autofaiss

61

https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
https://github.com/criteo/autofaiss

the optimal graph construction dimensionality d < dmax (Appendix, Figure 12, of Rege et al. [209]). A

careful study of DiskANN on different datasets is required for more general guidelines to choose graph

construction and OPQ dimensionality d.

3.6.4 Limitations

AdANNS’s core focus is to improve the design of the existing ANNS pipelines. To use AdANNS on a

corpus, we need to back-fill [204] the MRs of the data – a significant yet a one-time overhead. We also

notice that high-dimensional MRs start to degrade in performance when optimizing also for an extremely

low-dimensional granularity (e.g., < 24-d for NQ) – otherwise is it quite easy to have comparable accuracies

with both RRs and MRs. Lastly, the existing dense representations can only in theory be converted to MRs

with an auto-encoder-style non-linear transformation. We believe most of these limitations form excellent

future work to improve AdANNS further.

3.7 Conclusions

We proposed a novel framework, AdANNS , that leverages adaptive representations for different phases

of ANNS pipelines to improve the accuracy-compute tradeoff. AdANNS utilizes the inherent flexibility of

matryoshka representations [147] to design better ANNS building blocks than the standard ones which use

the rigid representation in each phase. AdANNS achieves SOTA accuracy-compute trade-off for the two

main ANNS building blocks: search data structures (AdANNS-IVF) and quantization (AdANNS-OPQ).

The combination of AdANNS-based building blocks leads to the construction of better real-world composite

ANNS indices – with as much as 8× reduction in cost at the same accuracy as strong baselines – while also

enabling compute-aware elastic search. Finally, we note that combining AdANNS with elastic encoders [62]

enables truly adaptive large-scale retrieval.

62

Chapter 4

MatFormer: Nested Transformer for Elastic

Inference

4.1 Overview

Transformer models are deployed in a wide range of settings, from multi-accelerator clusters to standalone

mobile phones. The diverse inference constraints in these scenarios necessitate practitioners to train foundation

models such as PaLM 2, Llama, & ViTs as a series of models of varying sizes. Due to significant training

costs, only a select few model sizes are trained and supported, limiting more fine-grained control over

relevant tradeoffs, including latency, cost, and accuracy. This chapter introduces MatFormer1, a nested

Transformer architecture designed to offer elasticity in a variety of deployment constraints. Each Feed

Forward Network (FFN) block of a MatFormer model is jointly optimized with a few nested smaller FFN

blocks. This training procedure allows for the Mix’n’Match of model granularities across layers – i.e., a

trained universal MatFormer model enables extraction of hundreds of accurate smaller models, which were

never explicitly optimized. We empirically demonstrate MatFormer’s effectiveness across different model

classes (decoders & encoders), modalities (language & vision), and scales (up to 2.6B parameters). We

find that a 2.6B decoder-only MatFormer language model (MatLM) allows us to extract smaller models

spanning from 1.5B to 2.6B, each exhibiting comparable validation loss and one-shot downstream evaluations

1MatFormer stands for Matryoshka Transformer due to the model’s inherent nested nature.

63

to their independently trained counterparts. Furthermore, we observe that smaller encoders extracted from a

universal MatFormer-based ViT (MatViT) encoder preserve the metric-space structure for adaptive large-

scale retrieval. Finally, we showcase that speculative decoding with the accurate and consistent submodels

extracted from MatFormer can further reduce inference latency. Code and pretrained models are open-

sourced at https://github.com/RAIVNLab/MatFormer-OLMo and https://github.com/

google-research/scenic/tree/main/scenic/projects/matvit.

4.2 Introduction

Tr
ai

ni
ng

In
fe

re
nc

e

MatFormer Block Mix`n`Match

Add & Norm

Add & Norm

Attention

FFN
S

M

L

XL

 M
at

ry
os

hk
a

S
tr

uc
tu

re

Figure 4.1: MatFormer introduces nested structure into the Transformer’s FFN block & jointly trains all the
submodels, enabling free extraction of hundreds of accurate submodels for elastic inference.

Large Foundation models [9, 195, 53] are deployed in a variety of settings like real-time response on

mobile phones or in batch setting on multi-cluster GPUs for web-scale serving. To handle such varied settings,

each model family provides a few independently trained models of different sizes. In order to cover a wide

range of applications, typically these models’ sizes are nearly linear on log-scale. For example, Llama family

provides models with 7B, 13B, 33B and 65B parameters [239].

Such an approach has two key drawbacks: (a) as the models are independently trained, they incur

significant overhead for colocation during inference and are not behaviorally consistent with each other

which are detrimental to inference optimization techniques like speculative decoding [157] and model

64

https://github.com/RAIVNLab/MatFormer-OLMo
https://github.com/google-research/scenic/tree/main/scenic/projects/matvit
https://github.com/google-research/scenic/tree/main/scenic/projects/matvit

cascades [258], and (b) due to training overhead, practitioners typically train only a few models which do not

cover the entire set of downstream use-cases. For example, a deployment setup might, say, have the latency

budget to support 40B parameter Llama model, but can only host a 33B variant because the next bigger model

(65B) has significantly higher latency. So, one would need to settle for a less accurate model despite the

larger latency budget. While model compression approaches aim to address this issue, they typically require

additional training for each model that needs to be extracted. Furthermore, when applied to LLMs, these

techniques are known to significantly drop the accuracy [124].

In this chapter, we propose MatFormer, a natively elastic Transformer [245] architecture that allows

for training one universal model which can be used to extract hundreds of smaller submodels without any

additional training (Figure 4.1). MatFormer is a general architecture that can be applied to both encoders

and decoders, is domain agnostic, and is compatible with most design choices and training pipelines of large

Transformer-based models – LLMs & ViTs.

MatFormer follows the principle of matryoshka representation learning [147], discussed in Chapter 2,

to introduce nested substructure inside the standard Transformer block. Formally, MatFormer defines a

Transformer blocks Ti, such that, T1 ⊂ T2 ⊂ · · · ⊂ Tg, where g is the number of nested transformer

blocks, and Ti ⊂ Ti+1 relation indicates that the parameters of Ti are contained in those of Ti+1. MatFormer

can induce such sub-structure in both the attention and the feedforward network (FFN) blocks of the

Transformer (see Figure 4.1). Consider a FFN block that has dff neurons in the hidden layer. Then,

MatFormer induces matryoshka structure on these neurons, where Ti contains the first mi neurons and

1 ≤ m1 ≤ m2 · · · ≤ mg = dff represent the number of neurons for each granularity or sub-model. Intuitively,

this implies that the first m1 neurons are “most significant” neurons as they belong to all the blocks followed

by the next m2 −m1, and so on. We can form a similar sub-structure on the attention heads, with the heads

being organized from “most” to “least” significant, where the more significant heads are shared by more

sub-models. That is, we use only the first mi attention heads for the ith granularity. In fact, we can also

introduce this sub-structure in the token embedding (dmodel) supplied to each Transformer block.

However, in most LLMs and ViTs, the FFN block in the Transformer accounts for more than 60%

non-embedding parameters and is responsible for the largest chunk of latency during inference. So, in this

work, we focus on inducing the MatFormer’s nested sub-structure in the FFN block. We then stack the

65

individual blocks (for l layers) to form g nested models (M1...g) with shared parameters i.e.,Mi ⊂Mi+1.

Finally, we jointly train these g models by combining each model’s loss.

This leads to a natural question: can one extract more than g models after inducing the MatFormer

structure? Yes, in fact, it is possible to extract exponentially many models. Using the trained MatFormer

blocks T1, . . . , Tg at each layer, one can form new models by Mix’n’Match, i.e., by taking an arbitrary

combination of these blocks across layers. For example, in the first layer, one can select Tg, the largest block,

choose T2 in the second layer, and so on, forming gl different models. As we explicitly optimized only for

g models, instead of the exponentially many models, are the extracted models accurate? Surprisingly, in

multiple settings, and for a various model sizes, we observe that the extracted models indeed are accurate,

with accuracy scaling with the size of the extracted model.

We train Matformer-based decoder-only Language Models (MatLM) up to 2.6B parameters and observe

that: (a) MatLMs explicitly trained with g exponentially spaced granularities almost match validation loss

and one-shot downstream evals of respective g baseline models trained independently from scratch, (b) our

extracted models using Mix’n’Match lie on the accuracy-vs-parameters trade-off curve generated by the

g explicitly trained models, (c) through scaling experiments we observe that the loss vs compute law for

different MatFormer models remains similar to vanilla Transformer models across different granularities

and (d) the submodels extracted from MatLM have highly consistent behavior that is highly desirable for

inference optimizations and deployment across scales.

We further studied MatFormer-based ViT models (MatViT) and have similar observations as MatLM.

For example, MatViT-L/16 improves the accuracy of the standard ViT-L/16 model on ImageNet-1K, and the

extracted sub-models all match or even perform better than the independently trained baselines. Furthermore,

we demonstrate that, due to high consistency, MatViT models can be used as “elastic encoders” for adaptive

image retrieval. That is, the metric-space of an image encoded by the universal (i.e. the largest) MatViT

model is roughly preserved by the nested submodels. Hence, based on query complexity, system load, and

various other considerations, we can use one of the extracted MatViT encoders at inference time for retrieval

on a fixed corpus encoded by the universal model – providing over 40% lesser compute overhead with

< 0.5% drop in accuracy.

We make these key contributions:

66

1. We introduce MatFormer, which incorporates a nested sub-structure within the standard Transformer and

jointly optimizes all the g granularities to produce a single, universal elastic model.

2. Employing Mix’n’Match of granularities across layers in a universal MatFormer model yields hundreds of

accurate and consistent submodels without any additional training cost (Section 4.4).

3. MatFormer generalizes effectively to both decoder-only language models (MatLM) and vision encoders

(MatViT), scaling as reliably and accurately as the standard Transformer, while enabling significantly

faster autoregressive generation and large-scale adaptive dense retrieval (Section 4.5).

4.3 Related Work

A standard Transformer [245] has become the unifying model architecture for foundation models [24]

across modalities like language [27], vision [53] and audio [203]. While extremely powerful, the standard

Transformer block is not natively elastic in a way that enables large-scale adaptive and flexible deploy-

ment across various resource constraints. To cater to the plethora of deployment requirements, existing

solutions include training a family of models of varying sizes [9, 240], post-hoc efficiency techniques like

quantization [60], pruning [149], distillation [220] and mixture of varying capacity experts (MoE) [278].

However, these solutions often are specific to the single constraint at hand, and require additional training or

trade-off memory/compute during inference making them far from being a truly elastic solution for adaptive

deployment. Lastly, Transformer based LLMs are often sped-up during inference with techniques like

speculative decoding [157, 40] – that benefits from the smaller draft & the larger verifier models having

similar behavior – or early exiting [222] to enable real-time deployment.

Obtaining multiple smaller models from a single model has been explored in the past [275, 274, 30, 87, 31]

with most works focusing on CNN encoders. Specifically, OFA [30] creates a universal CNN model

which is used to extract and finetune submodels for a handful of deployment constraints while slimmable

networks [275] optimize for limited preset widths and require explicit training to interpolate for a few more

intermediate widths [274]. NAS techniques that sample random (not nested) subnetworks during training at

each step, and then find the subnetwork architecture to retrain from scratch before deployment have been

explored [255]. These techniques fall short of being truly elastic and come with significant training overheads.

More recently some of them have been extended to Transformer encoders [39, 110, 218] for extracting

67

sub-models in both static or dynamic settings but fail at extending further to decoder-only language models.

While not in the weight space, matryoshka representation learning [147] & FlexiViT [21] showcase elasticity

in output & input spaces respectively by smoothly spanning deployment constraints with minimal overhead.

MatFormer, in contrast, builds upon these works by nested the weight space instead to enable truly elastic

and adaptive Transformer-based (decoder & encoder) models that span all the accuracy-vs-compute tradeoff

(statically or dynamically) with minimal changes and training overhead (Figure 4.1). Finally, we also point

the readers to SortedNet [241], a concurrent work with similar goals applied to encoders, which optimizes

many sampled submodels (akin to prior works) unlike MatFormer’s joint optimization of a few (typically 4)

nested submodels.

4.4 MatFormer

In this section, we define MatFormer’s nested substructure (Section 4.4.1) and discuss its training procedure

for a chosen g model granularities (Section 4.4.2). We then discuss elastic inference using Mix’n’Match

models (Section 4.4.3) from MatFormer along with its deployment considerations.

4.4.1 MatFormer Structure

MatFormer defines g Transformer blocks Ti, such that, T1 ⊂ T2 ⊂ · · · ⊂ Tg where Ti ⊂ Ti+1 indicates that

the parameters of Ti are contained in those of Ti+1. While it is possible to impose such a structure on any

part of the Transformer, we select the FFN block to define our method and present our experiments, as the

model size and computational cost of a Transformer is dominated (around 60% for LLMs and ViTs) by the

FFN block (see Appendix B of Devvrit et al. [62]).

The Transformer FFN block has a single hidden layer with dff neurons and both input and outputs in

Rdmodel , and fixed FFN ratio := dff/dmodel (typically ≥ 4). MatFormer introduces the matryoshka nested

structure with g granularities on the hidden representation of the FFN block. Concretely, a nested sub-block

of the Transformer, Ti contains the first mi neurons of the FFN and 1 ≤ m1 ≤ · · · ≤ mg = dff represent

the number of neurons for each granularity or sub-model. So, depending on the chosen granularity the FFN

68

operation of Ti i.e., T FFN
i on an input x ∈ Rdmodel is:

T FFN
i (x) = σ(x ·W1[0 : mi]

⊤) ·W2[0 : mi], (4.1)

where the weight matrices of FFN are W1,W2 ∈ Rdff×dmodel and bias terms are omitted for simplicity.

W1[0 : k] denotes the submatrix with the first k rows of W1. Finally, σ is a non-linearity often set to

GELU [105] or squared ReLU [231]. In this work, we chose the g = 4 exponentially spaced granularities

with FFN ratios of {0.5, 1, 2, 4} i.e., the nested hidden neurons are of the sizes {dff8 ,
dff
4 ,

dff
2 , dff}.

With the nested MatFormer blocks T1, T2 . . . Tg, we can combine these to form a MatFormer model,

with g nested submodelsM1 ⊂M2 . . . ,⊂Mg whereMi ← [Ti]
×l, i.e.,Mi is formed by stacking Ti for l

layers. The input and output embedding matrices are shared across the models.

4.4.2 Training

For a Transformer modelM, the forward pass on an input x is denoted byM(x) and let L denote the loss

function between the output and the target y: L(M(x), y).

MatFormer relies on a simple training strategy of jointly optimizing all the g nested submodels together.

To this end, we set the MatFormer loss as a weighted average of loss of g submodels and train for it using the

standard stochastic gradient-based optimizers [225]:

LJOINT(x, y) =

g∑
i=1

λi · L(Mi(x), y), (4.2)

where λi > 0 is the weight of i-th granular submodel. In this work, we set {λi}i=1...g to be uniform i.e., 1/g

but explore tuning {λi}i=1...g in Appendix D.4 of Devvrit et al. [62] to further improve MatFormer.

The joint training in MatFormer involves one forward pass per each of the g submodels and benefits from

portions of shared computation during backpropagation. MatFormer training results in g accurate nested

submodelsM1...g inside the universal MatFormer model (Mg). Note that this simple strategy outperforms

various other training techniques (Appendix D.2 of Devvrit et al. [62]). Finally, instead of pretraining models

with MatFomer structure, we can also induce this structure via finetuning.

MatFormer training is ∼ 15% faster (for g = 4) than training all the Transformer based equivalent

69

submodels independently (Appendix B of Devvrit et al. [62]). However, MatFormer also enables the

extraction of hundreds of smaller submodels along the accuracy-vs-compute curve traced by the g explicitly

optimized submodels (Section 4.4.3). These models emerge for free using Mix’n’Match during inference and

drastically reduce the amortized training cost per model obtained through MatFormer. The joint optimization,

even without self-distillation fromMg, results in smaller submodels that have highly consistent behavior

(Section 4.4.4) with the universal model. Finally, in Appendix B.1 of Devvrit et al. [62], we argue that the

training efficiency of MatFormer can be significantly improved through various optimizations.

4.4.3 Mix’n’Match

At inference time, it is trivial to extract one of the g submodels M1 ⊂ M2 . . . ,⊂ Mg by stacking the

corresponding Transformer block Ti across layers. However, by selecting different granularity for each

MatFormer layer, it is possible to generate a combinatorially large number of accurate smaller models for free.

We call this simple procedure Mix’n’Match and observe that these additional model granularities –which

were never explicitly optimized – are highly performant.

In fact, we can further increase the number of extracted models by generating interpolating blocks

between fixed granulaties [147]. For example, we can generate a T̃ block that uses first 1
2(mi + mi+1)

neurons in the FFN layer which still tends to be highly accurate.

To summarize, given a computational budget, we can extract a highly accurate model with Mix’n’Match

for the constraints rather than using a smaller less accurate model or training a model for this specific constraint

(Sections 4.5.1 & 4.5.2). We note that a compute constraint can be satisfied by various Mix’n’Match models

with different accuracies, making identifying the best Mix’n’Match configurations without downstream

validation is an exciting direction for future work.

4.4.4 Deployment

During deployment, all we need to store is the single universal MatFormer model for different types of elastic

inference depending on the constraints. In the case of static workloads, where compute resources are known

beforehand and the inputs remain relatively similar in difficulty, one can choose the most accurate static

submodel for the constraints using Mix’n’Match. This eliminates the usage of a less accurate preexisting

70

model or training of a new one for the specific constraints.

For dynamic workloads, where the compute resources or the input hardness change on the fly, we can

use the universal MatFormer model to dynamically extract the optimal submodel for token-based routing

in LLMs akin to MoE [138, 162] and elastic encoders in dense retrieval (Section 4.5.2). This works largely

because all the extracted submodels have high behavioral consistency with universal MatFormer model

(Section 4.5.1) – minimizing the drift across predictions from various submodels. We measure the consistency

between two generative models as the percentage of matching tokens generated by them for the same prefix

or using the KL divergence of the smaller model outputs with the larger model outputs – this accounts for

potential sampling strategies in decoding. This highly consistent nature of MatFormer results in superior

inference time speedups for techniques like speculative decoding [157] (Section 4.5.1) and can assist in

reducing prediction drift between cross platform deployments. We also show that higher model consistency

also aids metric-space structure preservation in encoder models (Section 4.5.2).

4.5 Experiments

In this section, we empirically evaluate MatFormer across modalities (language and vision), model classes

(decoder and encoder), and scales (up to 2.6B parameters). Specifically, we train and analyze MatFormer-

based decoder-only Language Models – MatLMs (Section 4.5.1) – and encoder-only Vision Transformers

– MatViT (Section 4.5.2) models with g = 4 nested granularities across various model sizes. For a fair

comparison, we also independently train the Transformer baseline for the submodel of each granularity

across model sizes for the same tasks. We primarily focus on the elastic deployment of MatFormer-based

models (Sections 4.5.1 & 4.5.2) for tasks spanning from one-shot generative evals to adaptive image retrieval.

Additionally, we also investigate the reliable scaling behavior [132] of the MatFormer models (Section 4.5.1).

4.5.1 MatLM: MatFormer Language Models

We build MatFormer-based decoder-only Language Models – MatLMs – and contrast them to their vanilla

Transformer counterparts (LMs) [169]. The LMs broadly follow the training pipeline and procedure outlined

by Thoppilan et al. [238]. For each MatLM model with a set dmodel, we jointly optimize for g = 4 nested

granularities represented by FFN ratios of {0.5, 1, 2, 4} – i.e., only the hidden representation size of the FFN

71

block changes. We denote these submodels as MatLM – {S, M, L, XL} in increasing order of model size

and refer to MatLM-XL as the universal MatLM. For baselines, we train vanilla Transformer models with

comparable architectures. That is, for each MatLM, we train 4 separate baseline models with FFN ratios of

{0.5, 1, 2, 4} for a fixed dmodel denoted as Baseline – {S, M, L, XL}. We evaluate these models on validation

loss (= log perplexity) and average accuracy on 26 English tasks similar to [27, 68, 9]. Of these 26 tasks,

we group 5 tasks that require generating multiple tokens under “GEN” and the remaining tasks that involve

choosing an option from the input text under “RANK”. Please see Appendix A of Devvrit et al. [62] for

further details on training, evaluation, and the datasets.

Elastic Inference with MatLM

To showcase elastic inference, we evaluate the 2.6B parameter MatLM models on its ability (a) to provide

models spanning the accuracy-vs-compute curve using Mix’n’Match (Section 4.4.3) and (b) to improve

post-hoc inference optimization techniques like Speculative Decoding [157] to further speed-up accurate

auto-regressive generation.

Accurate MatLM submodels for every constraint for free with Mix’n’Match. Leveraging Mix’n’Match,

a MatLM can provide accurate models for every compute constraint (between S and XL), not just the explicitly

optimized granularities {S, M, L, XL}. We evaluate the impact of Mix’n’Match on the 2.6B parameter

MatLM in Figure 4.2 through validation loss and downstream evals and contrast them to four granularities

{S, M, L, XL} of the 2.6B baseline LM (all trained independently). In Figures 4.2a, 4.2b & 4.2c, we show

that all MatLM – {S, M, L, XL} models all perform as well as their corresponding baselines – with marginal

improvements and drops across the scale.

In Figure 4.2a we see that Mix’n’Match helps obtain many models on the optimal loss-vs-compute curve

at zero cost. Moreover, downstream eval tasks on these Mix’n’Match models also mimic this trend, as shown

in Figures 4.2c & 4.2b. In a deployment setting that only has 55% of the required compute resources needed

for the MatLM-XL model, it is now possible to have a Mix’n’Match submodel with < 2% accuracy drop on

RANK evals. Without elastic deployment due to Mix’n’Match, we would see a > 2.5% accuracy drop due to

the use of the MatLM-M model. Note that we highlight only a few of the hundreds of accurate Mix’n’Match

models along the curves. We discuss additional details and results on the Mix’n’Match procedure in Appendix

72

0.8 1.0 1.2 1.4 1.6 1.8
N(Non-Embedd. Parameters) 1e9

2.2

2.4

2.6

2.8

3.0

Lo
ss

MatFormer
Mix'n'Match
Baseline

(a) Validation loss

0.8 1.0 1.2 1.4 1.6 1.8
N(Non-Embedd. Parameters) 1e9

40

45

50

55

60

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

MatFormer
Mix'n'Match
Baseline

(b) 1-shot RANK Evals

0.8 1.0 1.2 1.4 1.6 1.8
N(Non-Embedd. Parameters) 1e9

10

15

20

25

30

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

MatFormer
Mix'n'Match
Baseline

(c) 1-shot GEN Evals

0.8 1.0 1.2 1.4 1.6
N(Non-Embedd. Parameters) 1e9

60

70

80

90

100

Co
ns

ist
en

cy
 (%

)

MatFormer
Mix'n'Match
Baseline

(d) Consistency with the XL model

Figure 4.2: Validation loss & one-shot downstream evaluation scores for the 2.6B MatLM & baseline
models. Mix’n’Match helps generate accurate and more consistent models from MatLM that lie on the
performance-vs-compute curve spanned by the explicitly optimized submodels.

of Devvrit et al. [62].

MatLM submodels speed up speculative decoding. Speculative decoding leverages an accurate

lightweight LM as a draft model to autoregressively generate a few tokens, followed by verifying these drafts

with a larger model through parallel decoding on the generated tokens. When the draft is inaccurate, the draft

model is rolled back and reset to the larger model’s output. This results in considerable inference speed-up

for the same accuracy as the large model. We point the reader to the original paper for a more detailed

explanation [157].

Slow down of this algorithm stems from cases where the smaller model’s predictions disagree with the

larger model. A draft model that is significantly more consistent with the larger verifier model would lead

to less rollbacks of the draft predictions and therefore lower latency. As seen in Figure 4.2d the MatLM

submodels can be up to 8.5% more consistent than the baselines to their corresponding XL model. The

significant gap persists even in the KL divergence variant of consistency with the XL model’s outputs (see

Figure 6 in Appendix of Devvrit et al. [62]). This improved consistency along with the need for only a single

73

universal model positions MatLM favorably to improve techniques that require draft and verifier models such

as speculative decoding.

Table 4.1: Inference time speed-ups over a standard
2.6B model through speculative decoding using a 1.5B
(S) draft and 2.6B (XL) verifier model.

Speculative Decoding LAMBADA TriviaQA

Baseline 1.10× 1.08×

MatLM 1.14× 1.11×

+ shared attention cache 1.16× 1.14×

Table 4.1 shows the inference time speed-ups

from speculative decoding using the S and XL sub-

models of the 2.6B language model for drafting

and verification respectively. Speculative decoding

with independently trained baseline LMs results in a

speed-up of up to 10% over the standard autoregres-

sive decoding of the 2.6B-XL model. But MatLM-

based speculative decoding is up to 6% faster than

traditional speculative decoding. This additional

speed-up can be primarily attributed to the more con-

sistent nature of MatLM-based drafter and verifier models and is further boosted by the ability to share

attention cache across models from MatLM which is infeasible for the baselines (see Appendix B.2 of Devvrit

et al. [62]). Finally, MatLM further reduces the memory overhead for inference by removing the need to have

two models during resource-constrained deployment.

MatLM Scales as well as Vanilla Transformer LMs

Now that we have established that a 2.6B MatLM model and its submodels are as accurate as the baseline

Transformer LMs, we want to examine the scalability of training MatLM models. So, we study the scaling

properties [132, 108] of MatLMs and compare them to vanilla Transformer baseline LMs trained for the

same number of tokens. We train models ranging from 78M to 2.6B parameters on 10B to 160B tokens and

plot the validation loss for MatLM – {S, M, L, XL} compared against their baselines in Figure 7 in Appendix

of Devvrit et al. [62].

First, in Figure 4.3a, we observe that the training of MatLM-XL models across model sizes scale

as reliably as the Baseline-XL LMs for loss vs. number of parameters. However, Figure 4.3b interest-

ingly shows that it is not just the XL models but rather all the nested submodels, irrespective of gran-

ularity {S, M, L, XL}, of MatLM and Baseline that follow the same scaling trend. Therefore, we fit

74

a scaling law according to the number of non-embedding parameters (N) and training tokens (D) for

all possible submodels for both MatLMs and the baselines in Table 4.2. We observe that the fitted

parameters are extremely similar, suggesting that MatLMs scale similarly to vanilla Transformer LMs.

Table 4.2: Fitted parameters for the scaling equa-
tion: Loss(N,D) = a · (ND)b + c

a b c

Baseline 20.917 -0.119 1.868

Matformer 17.516 -0.114 1.845

In Figures 4.3c & 4.3d we also find that the downstream

evals for MatLM are within 0.5% of the baselines, with

the smaller submodels even outperforming the baselines

at scale. Finally, Figure 7f in the Appendix of Devvrit

et al. [62] shows that the MatLM submodels are more

consistent with their XL model compared to the baseline

counterparts across scales.

We note that the scaling law equation does not capture how (1) MatLMs have been optimized for multiple

submodels and even have performant submodels that have not been explicitly optimized for (Section 4.5.1),

0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e9

2.75

3.00

3.25

3.50

3.75

Lo
ss

MatFormer
Baseline

(a) Validation loss for XL-models

0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e9

3.0

3.5

4.0

Lo
ss

MatFormer
Baseline

(b) Validation loss for all models

0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e9

45

50

55

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

MatFormer
Baseline

(c) 1-shot RANK Evals

0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e9

5

10

15

20

25

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

MatFormer
Baseline

(d) 1-shot GEN Evals

Figure 4.3: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B parameters
and observe the scaling trends of all granularities (S, M, L, XL) for validation loss and 1-shot downstream
evaluation scores. We find that the MatLM-XL models across scales mimic the training trends of Baseline-XL
models. Interestingly, we also note that that validation loss and downstream evaluations follow the scaling
trends of the XL-models across all granularities.

75

and (2) MatLMs and baselines of the same size have different training FLOPs per step. We leave formulations

that capture these subtleties to future work and further discuss this in Appendix C.1 of Devvrit et al. [62]. We

provide full results split by granularity in Appendix C of Devvrit et al. [62].

4.5.2 MatViT: MatFormer Vision Transformers

In this section, we extend MatFormer to Vision Transformer (ViT) [67] based computer vision encoder models.

MatFormer-based ViT – MatViT – enables elastic inference for fundamental tasks like image classification

and retrieval. To this end, we train the MatFormer variant of the standard ViT-B/16 and ViT-L/16 models –

MatViT-B/16 and MatViT-L/16 that are trained with g = 4 prechosen nested granularities (FFN ratios of

{0.5, 1, 2, 4}). B/16 models are trained on ImageNet-1K [215] with AugReg [233] while L/16 models are

pretrained on ImageNet-21K [55] followed by finetuning on ImageNet-1K. All models are trained with the

training setup and optimal hyperparameters of the standard ViT variants from the Scenic library [52].

Image Classification

For image classification, we evaluate both ViT & MatViT models on ImageNet-1K. Figure 4.4a shows that

the explicitly optimized granularities in MatViT result in as accurate models as the independently trained

baselines for the B/16. However for L/16, as shown in Figure 4.4b, we see that the MatViT models are up to

0.35% more accurate than the baseline for the same inference cost.

We then explore using MatFormer at different training stages with a 2× 2 grid of pretraining-finetuning

35 45 55 65 75 85
Total Parameters (M)

76

77

78

79

80

To
p-

1
Ac

cu
ra

cy
 (%

)

MatFormer
Mix'n'Match
Baseline

(a) B/16 trained on ImageNet-1K with AugReg

125 150 175 200 225 250 275 300
Total Parameters (M)

84.50

84.75

85.00

85.25

85.50

To
p-

1
Ac

cu
ra

cy
 (%

)

MatFormer
Mix'n'Match
Baseline

(b) L/16 pretrained on IN-21K→ ImageNet-1K.

Figure 4.4: MatViT variants match or outperform standard ViT models on ImageNet-1K classification and
provide free extracted models that span the accuracy-compute curve through Mix’n’Match.

76

35 45 55 65 75 85
Total Parameters (M) in Query Encoder

70

72

74

76

78

1-
NN

 A
cc

ur
ac

y
(%

)

MatFormer
Mix'n'Match
Baseline

(a) B/16 trained on ImageNet-1K with AugReg

125 150 175 200 225 250 275 300
Total Parameters (M) in Query Encoder

82.0

82.5

83.0

83.5

1-
NN

 A
cc

ur
ac

y
(%

)

MatFormer
Mix'n'Match
Baseline

(b) L/16 pretrained on IN-21K→ ImageNet-1K.

Figure 4.5: MatViT natively enables elastic encoders for adaptive retrieval that can be used for real-time
query side computation while retaining strong accuracy on ImageNet-1K, unlike the baselines.

pairs (Table 7 in Appendix E.1 of Devvrit et al. [62]) and find that using a MatFormer during pretraining

helps bring more accurate and flexible encoders for downstream use. Further, finetuning using MatFormer

enhances elastic deployment depending on the constraints at hand through Mix’n’Match.

Adaptive Encoders with Mix’n’Match. Furthermore, our Mix’n’match models’ accuracy almost lies on

the line joining accuracy of explicitly trained granularities. In scenarios where, say, an application can host

50M parameter B/16 model, MatViT can provide 0.8% more accurate model than the current approach which

would host the largest baseline model with ≤ 50M parameters.

During deployment, the universal MatViT model can be stored in memory and depending on the compute

constraints be used to extract an adaptable smaller model to maximize accuracy with the available resources

at that moment. Currently, we find the Mix’n’Match models on the accuracy-compute curve through a quick

inference on the validation set. While relatively scalable, this points to the need for optimal budget allocation

across layers in neural networks [145].

Adaptive Image Retrieval

The goal of image retrieval is to find semantically similar images – e.g. images from the same class – using

representations obtained from a pretrained encoder [43]. Standard approach is to encode the database images

as well as query image with same encoder and run nearest neighbor retrieval for the query embedding. While

we can embed database images with an expensive encoder, the query encoder generally has to be real-time.

Furthermore, the setting of query encoding might be varied, e.g., on-device vs. cloud processing, varying

77

query load and query complexity. Current solutions have to stick to a fixed encoder thus compromising on

accuracy or cost for various settings.

Given the elastic nature of MatViT, it is a good candidate for query encoder. However, retrieval also

requires that submodels preserve distances between fixed database (with large encoder) and query embeddings

across all the granularities. If we use smaller baseline ViT models only for query encoding, these distances

are not preserved and lead to nearly 0 retrieval accuracy (see Figure 4.5).

We evaluate both ViT and MatViT encoders on ImageNet-1K for image retrieval. We compute 1-nearest

neighbor (NN) accuracy using the representation vector of the [CLS] token (also see Appendix E.2 of Devvrit

et al. [62]). Figure 4.5 shows that submodels extracted from MatViT can approximately preserve distances

and provide significantly more flexibility. For example, with a loss of < 0.5% accuracy, MatViT-L/16 can

reduce compute cost by 40%. To our knowledge, this is the first result of its kind and opens up a wide variety

of adaptive inference strategies for large-scale semantic search.

4.6 Conclusions

In this work we presented MatFormer, a natively elastic Transformer architecture that allows training a single

universal model which can be used to extract hundreds of smaller accurate submodels at zero additional cost

at deployment time We find that the MatFormer Language Model (MatLM) matches the perplexity & 1-shot

accuracy of independently trained models. In fact, MatLM demonstrates an interesting loss-vs-compute

scaling curve that is nearly independent of trained granularity indicating robust generalization to extremely

large models as well. Finally, MatFormer submodels enable diverse inference time speedups like faster

autoregressive generation with speculative decoding and elastic query encoders for adaptive dense retrieval

across modalities.

78

Chapter 5

Soft Threshold Weight Reparameterization

for Learnable Sparsity

5.1 Overview

Sparsity in Deep Neural Networks (DNNs) is studied extensively with the focus of maximizing prediction

accuracy given an overall parameter budget. Existing methods rely on uniform or heuristic non-uniform

sparsity budgets which have sub-optimal layer-wise parameter allocation resulting in a) lower prediction

accuracy or b) higher inference cost (FLOPs). This chapter proposes Soft Threshold Reparameterization

(STR), a novel use of the soft-threshold operator on DNN weights. STR smoothly induces sparsity while

learning pruning thresholds thereby obtaining a non-uniform sparsity budget. Our method achieves state-

of-the-art accuracy for unstructured sparsity in CNNs (ResNet50 and MobileNetV1 on ImageNet-1K), and,

additionally, learns non-uniform budgets that empirically reduce the FLOPs by up to 50%. Notably, STR

boosts the accuracy over existing results by up to 10% in the ultra sparse (99%) regime and can also be

used to induce low-rank (structured sparsity) in RNNs. In short, STR is a simple mechanism which learns

effective sparsity budgets that contrast with popular heuristics. Code, pretrained models and sparsity budgets

are at https://github.com/RAIVNLab/STR.

79

https://github.com/RAIVNLab/STR

5.2 Introduction

Deep Neural Networks (DNNs) are the state-of-the-art models for many important tasks in the domains of

Computer Vision, Natural Language Processing, etc. To enable highly accurate solutions, DNNs require

large model sizes resulting in huge inference costs, which many times become the main bottleneck in the

real-world deployment of the solutions. During inference, a typical DNN model stresses the following aspects

of the compute environment: 1) RAM - working memory, 2) Processor compute - Floating Point Operations

(FLOPs1), and 3) Flash - model size. Various techniques are proposed to make DNNs efficient including

model pruning (sparsity) [93], knowledge distillation [28], model architectures [111] and quantization [206].

Sparsity of the model, in particular, has potential for impact across a variety of inference settings as it

reduces the model size and inference cost (FLOPs) without significant change in training pipelines. Naturally,

several interesting projects address inference speed-ups via sparsity on existing frameworks [166, 69] and

commodity hardware [10]. On-premise or Edge computing is another domain where sparse DNNs have

potential for deep impact as it is governed by billions of battery limited devices with single-core CPUs. These

devices, including mobile phones [8] and IoT sensors [197, 213], can benefit significantly from sparsity as it

can enable real-time on-device solutions.

Sparsity in DNNs, surveyed extensively in Section 5.3, has been the subject of several papers where new

algorithms are designed to obtain models with a given parameter budget. But state-of-the-art DNN models

tend to have a large number of layers with highly non-uniform distribution both in terms of the number

of parameters as well as FLOPs required per layer. Most existing methods rely either on uniform sparsity

across all parameter tensors (layers) or on heuristic non-uniform sparsity budgets leading to a sub-optimal

weight allocation across layers and can lead to a significant loss in accuracy. Furthermore, if the budget is

set at a global level, some of the layers with a small number of parameters would be fully dense as their

contribution to the budget is insignificant. However, those layers can have significant FLOPs, e.g., in an

initial convolution layer, a simple tiny 3×3 kernel would be applied to the entire image. Hence, while such

models might decrease the number of non-zeroes significantly, their FLOPs could still be large.

Motivated by the above-mentioned challenges, this works addresses the following question: “Can we

design a method to learn non-uniform sparsity budget across layers that is optimized per-layer, is stable, and

1One Multiply-Add is counted as one FLOP

80

is accurate?".

Most existing methods for learning sparse DNNs have their roots in the long celebrated literature of

high-dimension statistics and, in particular, sparse regression. These methods are mostly based on well-

known Hard and Soft Thresholding techniques, which are essentially projected gradient methods with explicit

projection onto the set of sparse parameters. However, these methods require a priori knowledge of sparsity,

and as mentioned above, mostly heuristic methods are used to set the sparsity levels per layer.

We propose Soft Threshold Reparameterization (STR) to address the aforementioned issues. We use the

fact that the projection onto the sparse sets is available in closed form and propose a novel reparameterization

of the problem. That is, for forward pass of DNN, we use soft-thresholded version [66] of a weight tensor

Wl of the l-th layer in the DNN: S(Wl, αl) := sign (Wl) · ReLU(|Wl| − αl) where αl is the pruning

threshold for the l-th layer. As the DNN loss can be written as a continuous function of αl’s, we can use

backpropagation to learn layer-specific αl to smoothly induce sparsity. Typically, each layer in a neural

network is distinct unlike the interchangeable weights and neurons making it interesting to learn layer-wise

sparsity.

Due to layer-specific thresholds and sparsity, STR is able to achieve state-of-the-art accuracy for un-

structured sparsity in CNNs across various sparsity regimes. STR makes even small-parameter layers sparse

resulting in models with significantly lower inference FLOPs than the baselines. For example, STR for 90%

sparse MobileNetV1 on ImageNet-1K results in a 0.3% boost in accuracy with 50% fewer FLOPs. Empiri-

cally, STR’s learnt non-uniform budget makes it a very effective choice for ultra (99%) sparse ResNet50 as

well where it is ∼10% more accurate than baselines on ImageNet-1K. STR can also be trivially modified to

induce structured sparsity, demonstrating its generalizability to a variety of DNN architectures across domains.

Finally, STR’s learnt non-uniform sparsity budget transfers across tasks thus discovering an efficient sparse

backbone of the model.

The 3 major contributions of this work are:

• Soft Threshold Reparameterization (STR), for the weights in DNNs, to induce sparsity via learning the

per-layer pruning thresholds thereby obtaining a better non-uniform sparsity budget across layers.

• Extensive experimentation showing that STR achieves the state-of-the-art accuracy for sparse CNNs

(ResNet50 and MobileNetV1 on ImageNet-1K) along with a significant reduction in inference FLOPs.

81

• Extension of STR to structured sparsity, that is useful for the direct implementation of fast inference in

practice.

5.3 Related Work

This section covers the spectrum of work on sparsity in DNNs. The sparsity in the discussion can be

characterized as (a) unstructured and (b) structured while sparsification techniques can be (i) dense-to-sparse,

and (ii) sparse-to-sparse. Finally, the sparsity budget in DNNs can either be (a) uniform, or (b) non-uniform

across layers. This will be a key focus of this paper, as different budgets result in different inference compute

costs as measured by FLOPs. This section also discusses the recent work on learnable sparsity.

5.3.1 Unstructured and Structured Sparsity

Unstructured sparsity does not take the structure of the model (e.g. channels, rank, etc.,) into account.

Typically, unstructured sparsity is induced in DNNs by making the parameter tensors sparse directly based on

heuristics (e.g. weight magnitude) thereby creating sparse tensors that might not be capable of leveraging

the speed-ups provided by commodity hardware during training and inference. Unstructured sparsity

has been extensively studied and includes methods which use gradient, momentum, and Hessian based

heuristics [73, 155, 152, 95, 59], and magnitude-based pruning [93, 90, 282, 77, 79, 186, 15, 183, 189, 144,

266]. Unstructured sparsity can also be induced by L0, L1 regularization [173], and Variational Dropout

(VD) [184].

Gradual Magnitude Pruning (GMP), proposed in [282], and studied further in [79], is a simple

magnitude-based weight pruning applied gradually over the course of the training. Discovering Neural

Wirings (DNW) [266] also relies on magnitude-based pruning while utilizing a straight-through estimator for

the backward pass. GMP and DNW are the state-of-the-art for unstructured pruning in DNNs (especially in

CNNs) demonstrating the effectiveness of magnitude pruning. VD gets accuracy comparable to GMP [79] for

CNNs but at a cost of 2× memory and 4× compute during training making it hard to be used ubiquitously.

Structured sparsity takes structure into account making the models scalable on commodity hardware

with the standard computation techniques/architectures. Structured sparsity includes methods which make

parameter tensors low-rank [119, 6, 174], prune out channels, filters and induce block/group sparsity [170,

82

262, 161, 175, 85, 273]. Even though structured sparsity can leverage speed-ups provided by parallelization,

the highest levels of model pruning are only possible with unstructured sparsity techniques.

5.3.2 Dense-to-sparse and Sparse-to-sparse Training

Until recently, most sparsification methods were dense-to-sparse i.e., the DNN starts fully dense and is made

sparse by the end of the training. Dense-to-sparse training in DNNs encompasses the techniques presented

in [93, 282, 184, 77, 210].

The lottery ticket hypothesis [77] sparked an interest in training sparse neural networks end-to-end.

This is referred to as sparse-to-sparse training and a lot of recent work [186, 15, 73, 155, 59] aims to do

sparse-to-sparse training using techniques which include re-allocation of weights to improve accuracy.

Dynamic Sparse Reparameterization (DSR) [186] heuristically obtains a global magnitude threshold

along with the re-allocation of the weights based on the non-zero weights present at every step. Sparse

Networks From Scratch (SNFS) [59] utilizes momentum of the weights to re-allocate weights across layers

and the Rigged Lottery (RigL) [73] uses the magnitude to drop and the periodic dense gradients to regrow

weights. SNFS and RigL are state-of-the-art in sparse-to-sparse training but fall short of GMP for the same

experimental settings. It should be noted that, even though sparse-to-sparse can reduce the training cost, the

existing frameworks [196, 1] consider the models as dense resulting in minimal gains.

DNW [266] and Dynamic Pruning with Feedback (DPF) [164] fall between both as DNW uses a fully

dense gradient in the backward pass and DPF maintains a copy of the dense model in parallel to optimize the

sparse model through feedback. Note that DPF is complementary to most of the techniques discussed here.

5.3.3 Uniform and Non-uniform Sparsity

Uniform sparsity implies that all the layers in the DNN have the same amount of sparsity in proportion. Quite

a few works have used uniform sparsity [79], given its ease and lack of hyperparameters. However, some

works keep parts of the model dense, including the first or the last layers [164, 186, 282]. In general, making

the first or the last layers dense benefits all the methods. GMP typically uses uniform sparsity and achieves

state-of-the-art results.

Non-uniform sparsity permits different layers to have different sparsity budgets. Weight re-allocation

83

heuristics have been used for non-uniform sparsity in DSR and SNFS. It can be a fixed budget like the

ERK (Erdos-Renyi-Kernel) heuristic described in RigL [73]. A global pruning threshold [93] can also

induce non-uniform sparsity and has been leveraged in Iterative Magnitude Pruning (IMP) [77, 210]. A

good non-uniform sparsity budget can help in maintaining accuracy while also reducing the FLOPs due to

a better parameter distribution. The aforementioned methods with non-uniform sparsity do not reduce the

FLOPs compared to uniform sparsity in practice. Very few techniques like AMC [102], using expensive

reinforcement learning, minimize FLOPs with non-uniform sparsity.

Most of the discussed techniques rely on intelligent heuristics to obtain non-uniform sparsity. Learning

the pruning thresholds and in-turn learning the non-uniform sparsity budget is the main contribution of this

work.

5.3.4 Learnable Sparsity

Concurrent to our work, [221, 168, 156, 269, 12] have proposed learnable sparsity methods through training

of the sparse masks and weights simultaneously with minimal heuristics. The reader is urged to review

these works for a more complete picture of the field. Note that, while STR is proposed to induce layer-wise

unstructured sparsity, it can be easily adapted for global, filter-wise, or per-weight sparsity as discussed in

Appendix A.5 of Kusupati et al. [145].

5.4 Method - STR

Optimization under sparsity constraint on the parameter set is a well studied area spanning more than three

decades [66, 33, 123], and is modeled as:

min
W
L(W;D), s.t. ∥W∥0 ≤ k,

where D :=
{
xi ∈ Rd, yi ∈ R

}
i∈[n] is the observed data, L is the loss function,W are the parameters to be

learned and ∥ · ∥0 denotes the L0-norm or the number of non-zeros, and k is the parameter budget. Due to

non-convexity and combinatorial structure of the L0 norm constraint, it’s convex relaxation L1 norm has

been studied for long time and has been at the center of a large literature on high-dimensional learning.

84

In particular, several methods have been proposed to solve the two problems including projected gradient

descent, forward/backward pruning etc.

Projected Gradient Descent (PGD) in particular has been popular for both the problems as the projection

onto both L0 as well as the L1 ball is computable in almost closed form [14, 123]; L0 ball projection is called

Hard Thresholding while L1 ball projection is known as Soft Thresholding. Further, these methods have been

the guiding principle for many modern DNN model pruning (sparsity) techniques [93, 282, 189].

However, projection-based methods suffer from the problem of dense gradient and intermediate parameter

structure, as the gradient descent iterate can be arbitrarily out of the set and is then projected back onto L0 or

L1 ball. At a scale of billions of parameters, computing such dense gradients and updates can be daunting.

More critically, the budget parameter k is set at the global level, so it is not clear how to partition the budget

for each layer, as the importance of each layer can be significantly different.

In this work, we propose a reparameterization, Soft Threshold Reparameterization (STR) based on the

soft threshold operator [66], to alleviate both the above mentioned concerns. That is, instead of first updating

W via gradient descent and then computing its projection, we directly optimize over projected W . Let

Sg(W; s) be the projection ofW parameterized by s and function g. S is applied to each element ofW and

is defined as:

Sg(w, s) := sign (w) · ReLU(|w| − g(s)), (5.1)

where s is a learnable parameter, g : R→ R, and α = g(s) is the pruning threshold. ReLU(a) = max(a, 0).

That is, if |w| ≤ g(s), then Sg(w, s) sets it to 0.

Reparameterizing the optimization problem with S modifies (note that it is not equivalent) it to:

min
W
L(Sg(W, s),D). (5.2)

For L-layer DNN architectures, we divideW into: W = [Wl]
L
l=1 where Wl is the parameter tensor for

the l-th layer. As mentioned earlier, different layers of DNNs are unique can have significantly different

number of parameters. Similarly, different layers might need different sparsity budget for the best accuracy.

So, we set the trainable pruning parameter for each layer as sl. That is, s = [s1, . . . , sL].

Now, using the above mentioned reparameterization for each Wl and adding a standard L2 regularization

85

per layer, we get the following Gradient Descent (GD) update equation at the t-th step for Wl, ∀ l ∈ [L]:

W
(t+1)
l ← (1− ηt · λ)W(t)

l

− ηt∇Sg(Wl,sl)L(Sg(W
(t), s),D)⊙∇Wl

Sg(Wl, sl), (5.3)

where ηt is the learning rate at the t-th step, and λ is the L2 regularization (weight-decay) hyper-parameter.

∇Wl
Sg(Wl, sl) is the gradient of Sg(Wl, sl) w.r.t. Wl.

Now, S is non-differentiable, so we use sub-gradient which leads to the following update equation:

W
(t+1)
l ← (1− ηt · λ)W(t)

l

− ηt∇Sg(Wl,sl)L(Sg(W
(t), s),D)⊙ 1

{
Sg(W(t)

l , sl) ̸= 0
}
, (5.4)

where 1 {·} is the indicator function and A⊙B denotes element-wise (Hadamard) product of tensors A and

B.

Now, if g is a continuous function, then using the STR (5.2) and (5.1), it is clear that L(Sg(W, s),D)

is a continuous function of s. Further, sub-gradient of L w.r.t. s, can be computed and uses for gradient

descent on s as well; see Appendix A.2 of Kusupati et al. [145]. Algorithm 1 in the Appendix of Kusupati

et al. [145] shows the implementation of STR on 2D convolution along with extensions to global, per-filter

& per-weight sparsity. STR can be modified and applied on the eigenvalues of a parameter tensor, instead of

individual entries mentioned above, resulting in low-rank tensors; see Section 5.5.2 for further details. Note

that s also has the same weight-decay parameter λ.

Naturally, g plays a critical role here, as a sharp g can lead to an arbitrary increase in threshold leading to

poor accuracy while a flat g can lead to slow learning. Practical considerations for choice of g are discussed in

Appendix A.1 of Kusupati et al. [145]. For the experiments, g is set as the Sigmoid function for unstructured

sparsity and the exponential function for structured sparsity. Typically, {sl}l∈[L] are initialized with sinit to

ensure that the thresholds {αl = g(sl)}l∈[L] start close to 0. Figure 5.1 shows that the thresholds’ dynamics

are guided by a combination of gradients from L and the weight-decay on s. Further, the overall sparsity

budget for STR is not set explicitly. Instead, it is controlled by the weight-decay parameter (λ), and can be

further fine-tuned using sinit. Interestingly, this curve is similar to the handcrafted heuristic for thresholds

86

defined in [189]. Figure 5.2 shows the overall learnt sparsity budget for ResNet50 during training. The curve

looks similar to GMP [282] sparsification heuristic, however, STR learns it via backpropagation and SGD.

Figure 5.1: The learnt threshold parameter, α = g(s), for layer 10 in 90% sparse ResNet50 on ImageNet-1K
over the course of training.

Figure 5.2: The progression of the learnt overall budget for 90% sparse ResNet50 on ImageNet-1K over the
course of training.

Figure 5.3: The final learnt threshold values, [αl]
54
l=1 = [g(sl)]

54
l=1, for all the layers in 90% sparse ResNet50

on ImageNet-1K.

87

Finally, each parameter tensor learns a different threshold value, {αl}l∈[L], resulting in unique final

thresholds across the layers, as shown in Figure 5.3 for ResNet50. This, in turn, results in the non-uniform

sparsity budget (see Figure 5.6) which is empirically shown to be effective in increasing prediction accuracy

while reducing FLOPs. Moreover, (5.4) shows that the gradient update itself is sparse as gradient of L is

multiplied with an indicator function of Sg(Wl) ̸= 0 which gets sparser over iterations (Figure 5.2). So STR

addresses both the issues with standard PGD methods (Hard/Soft Thresholding) that we mentioned above.

5.4.1 Analysis

The reparameterization trick using the projection operator’s functional form can be used for standard

constrained optimization problems as well (assuming the projection operator has a closed-form). However,

it is easy to show that in general, such a method need not converge to the optimal solution even for convex

functions over convex sets. This raises a natural question about the effectiveness of the technique for

sparse weights learning problem. It turns out that for sparsity constrained problems, STR is very similar to

backward pruning [96] which is a well-known technique for sparse regression. Note that, similar to Hard/Soft

Thresholding, standard backward pruning also does not support differentiable tuning thresholds which makes

it challenging to apply it to DNNs.

To further establish this connection, let’s consider a standard sparse regression problem where y = Xw∗,

Xij ∼ N (0, 1), and X ∈ Rn×d. w∗ ∈ {0, 1}d has r ≪ d non-zeros, and d ≫ n ≫ r log d. Due to

the initialization, g(s) ≈ 0 in initial few iterations. So, gradient descent converges to the least ℓ2-norm

regression solution. That is, w = UUTw∗ where U ∈ Rd×n is the right singular vector matrix of X and is

a random n-dimensional subspace. As U is a random subspace. Since n≫ r log d, USU
T
S ≈

r
d · I where

S = supp(w∗), and US indexes rows of U corresponding to S. That is, minj∈S
∣∣Uj ·UTw∗∣∣ ≥ 1− o(1).

On the other hand,
∣∣Uj ·UT

Sw
∗∣∣ ≲ √

nr
d

√
log d with high probability for j ̸∈ S. As n≫ r log d, almost all

the elements of supp(w∗) will be in top O (n) elements of w. Furthermore, XSg(w, s) = y, so |s| would

decrease significantly via weight-decay and hence g(s) becomes large enough to prune all but say O (n)

elements. Using a similar argument as above, leads to further pruning of w, while ensuring recovery of

almost all elements in supp(w∗).

88

5.5 Experiments

This section showcases the experimentation followed by the observations from applying STR for (a) unstruc-

tured sparsity in CNNs and (b) structured sparsity in RNNs.

5.5.1 Unstructured Sparsity in CNNs

Experimental Setup

ImageNet-1K [55] is a widely used large-scale image classification dataset with 1K classes. All the CNN

experiments presented are on ImageNet-1K. ResNet50 [98] and MobileNetV1 [111] are two popular CNN

architectures. ResNet50 is extensively used in literature to show the effectiveness of sparsity in CNNs.

Experiments on MobileNetV1 argue for the generalizability of the proposed technique (STR). Dataset and

models’ details can be found in Appendix A.7 of Kusupati et al. [145].

STR was compared against strong state-of-the-art baselines in various sparsity regimes including

GMP [79], DSR [186], DNW [266], SNFS [59], RigL [73] and DPF [164]. GMP and DNW always

use a uniform sparsity budget. RigL, SNFS, DSR, and DPF were compared in their original form. Exceptions

for the uniform sparsity are marked in Table 5.1. The “+ ERK" suffix implies the usage of ERK budget [73]

instead of the original sparsity budget. Even though VD [184] achieves state-of-the-art results, it is omitted

due to the 2× memory and 4× compute footprint during training. Typically VD and IMP use a global thresh-

old for global sparsity (GS) [93] which can also be learnt using STR. The unstructured sparsity experiments

presented compare the techniques which induce layer-wise sparsity. Note that STR is generalizable to other

scenarios as well. Open-source implementations, pre-trained models, and reported numbers of the available

techniques were used as the baselines. Experiments were run on a machine with 4 NVIDIA Titan X (Pascal)

GPUs.

All baselines use the hyperparameter settings defined in their implementations/papers. The experiments

for STR use a batch size of 256, cosine learning rate routine and are trained for 100 epochs following the

hyperparameter settings in [266] using SGD + momentum. STR has weight-decay (λ) and sinit hyperpa-

rameters to control the overall sparsity in CNNs and can be found in Appendix A.6 of Kusupati et al. [145].

GMP1.5× [79] and RigL5× [73] show that training the networks longer increases accuracy. However, due to

89

the limited compute and environmental concerns [223], all the experiments were run only for around 100

epochs (∼3 days each). Unstructured sparsity in CNNs with STR is enforced by learning one threshold

per-layer as shown in Figure 5.3. PyTorch STRConv code can be found in Algorithm 1 of Appendix

of Kusupati et al. [145].

ResNet50 on ImageNet-1K

A fully dense ResNet50 trained on ImageNet-1K has 77.01% top-1 validation accuracy. STR is compared

extensively to other baselines on ResNet50 in the sparsity ranges of 80%, 90%, 95%, 96.5%, 98%, and 99%.

Table 5.1 shows that DNW and GMP are state-of-the-art among the baselines across all the aforementioned

sparsity regimes. As STR might not be able to get exactly to the sparsity budget, numbers are reported for

the models which nearby. Note that the 90.23% sparse ResNet50 on ImageNet-1K with STR is referred to as

the 90% sparse ResNet50 model learnt with STR.

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0
Sparsity (%)

45

50

55

60

65

70

75

To
p-

1
Ac

cu
ra

cy
 (%

)

STR
GMP
DNW
SNFS
SNFS + ERK
RigL
RigL + ERK
DPF

Figure 5.4: STR forms a frontier curve over all the baselines in all sparsity regimes showing that it is the
state-of-the-art for unstructured sparsity in ResNet50 on ImageNet-1K.

STR comfortably beats all the baselines across all the sparsity regimes as seen in Table 5.1 and is the

state-of-the-art for unstructured sparsity. Figure 5.4 shows that STR forms a frontier curve encompassing all

the baselines at all the levels of sparsity. Very few methods are stable in the ultra sparse regime of 98-99%

sparsity and GMP can achieve 99% sparsity. STR is very stable even in the ultra sparse regime, as shown in

90

Table 5.1 and Figure 5.4, while being up to 10% higher in accuracy than GMP at 99% sparsity.

STR induces non-uniform sparsity across layers, Table 5.1 and Figure 5.5 show that STR produces

Table 5.1: STR is the state-of-the-art for unstructured sparsity in ResNet50 on ImageNet-1K while having lesser
inference cost (FLOPs) than the baselines across all the sparsity regimes. ∗ and # imply that the first and last layer are
dense respectively. Baseline numbers reported from their respective papers/open-source implementations and models.
FLOPs do not include batch-norm.

Method
Top-1 Acc

(%)
Params

Sparsity
(%)

FLOPs

ResNet-50 77.01 25.6M 0.00 4.09G

GMP 75.60 5.12M 80.00 818M
DSR∗# 71.60 5.12M 80.00 1.23G
DNW 76.00 5.12M 80.00 818M
SNFS 74.90 5.12M 80.00 -
SNFS + ERK 75.20 5.12M 80.00 1.68G
RigL∗ 74.60 5.12M 80.00 920M
RigL + ERK 75.10 5.12M 80.00 1.68G
DPF 75.13 5.12M 80.00 818M
STR 76.19 5.22M 79.55 766M
STR 76.12 4.47M 81.27 705M

GMP 73.91 2.56M 90.00 409M
DNW 74.00 2.56M 90.00 409M
SNFS 72.90 2.56M 90.00 1.63G
SNFS + ERK 72.90 2.56M 90.00 960M
RigL∗ 72.00 2.56M 90.00 515M
RigL + ERK 73.00 2.56M 90.00 960M
DPF# 74.55 4.45M 82.60 411M
STR 74.73 3.14M 87.70 402M
STR 74.31 2.49M 90.23 343M
STR 74.01 2.41M 90.55 341M

GMP 70.59 1.28M 95.00 204M
DNW 68.30 1.28M 95.00 204M
RigL∗ 67.50 1.28M 95.00 317M
RigL + ERK 70.00 1.28M 95.00 ∼600M
STR 70.97 1.33M 94.80 182M
STR 70.40 1.27M 95.03 159M
STR 70.23 1.24M 95.15 162M

RigL∗ 64.50 0.90M 96.50 257M
RigL + ERK 67.20 0.90M 96.50 ∼500M
STR 67.78 0.99M 96.11 127M
STR 67.22 0.88M 96.53 117M

GMP 57.90 0.51M 98.00 82M
DNW 58.20 0.51M 98.00 82M
STR 62.84 0.57M 97.78 80M
STR 61.46 0.50M 98.05 73M
STR 59.76 0.45M 98.22 68M

GMP 44.78 0.26M 99.00 41M
STR 54.79 0.31M 98.79 54M
STR 51.82 0.26M 98.98 47M
STR 50.35 0.23M 99.10 44M

91

0 200 400 600 800 1000 1200 1400 1600
FLOPs (millions)

45

50

55

60

65

70

75

To
p-

1
Ac

cu
ra

cy
 (%

)
STR
GMP
DNW
SNFS
SNFS + ERK
RigL
RigL + ERK
DPF

Figure 5.5: STR results in ResNet50 models on ImageNet-1K which have the lowest inference cost (FLOPs)
for any given accuracy.

models which have lower or similar inference FLOPs compared to the baselines while having better prediction

accuracy in all the sparsity regimes. This hints at the fact that STR could be redistributing the parameters

thereby reducing the FLOPs. In the 80% sparse models, STR is at least 0.19% better in accuracy than the

baselines while having at least 60M (6.5%) lesser FLOPs. Similarly, STR has state-of-the-art accuracy in

90%, 95%, and 96.5% sparse regimes while having at least 68M (16.5%), 45M (22%) and 140M (54%) lesser

FLOPs than the best baselines respectively. In the ultra sparse regime of 98% and 99% sparsity, STR has

similar or slightly higher FLOPs compared to the baselines but is up to 4.6% and 10% better in accuracy

respectively. Table 5.1 summarizes that the non-uniform sparsity baselines like SNFS, SNFS+ERK, and

RigL+ERK can have up to 2-4× higher inference cost (FLOPs) due to non-optimal layer-wise distribution of

the parameter weights.

Observations: STR on ResNet50 shows some interesting observations related to sparsity and inference

cost (FLOPs). These observations will be further discussed in Section 5.6:

1. STR is state-of-the-art for unstructured sparsity.

2. STR minimizes inference cost (FLOPs) while maintaining accuracy in the 80-95% sparse regime.

3. STR maximizes accuracy while maintaining inference cost (FLOPs) in 98-99% ultra sparse regime.

4. STR learns a non-uniform layer-wise sparsity, shown in Figure 5.6, which shows that the initial layers of

92

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53Layer
0

20

40

60

80

100

Sp
ar

sit
y

(%
)

STR
Uniform
ERK
SNFS
VD
GS

Figure 5.6: Layer-wise sparsity budget for the 90% sparse ResNet50 models on ImageNet-1K using various
sparsification techniques.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53Layer

0

20

40

60

80

100

120

FL
OP

S
(M

illi
on

s)

STR
Uniform
ERK
SNFS
VD
GS

Figure 5.7: Layer-wise FLOPs budget for the 90% sparse ResNet50 models on ImageNet-1K using various
sparsification techniques.

the CNN can be sparser than that of the existing non-uniform sparsity methods. All the learnt non-uniform

budgets through STR can be found in Appendix A.3 of Kusupati et al. [145].

5. Figure 5.6 also shows that the last layers through STR are denser than that of the other methods which is

contrary to the understanding in the literature of non-uniform sparsity [186, 59, 73, 79]. This leads to a

sparser backbone for transfer learning. The backbone sparsities can be found in Appendix A.3 of Kusupati

et al. [145].

6. Figure 5.7 shows the layer-wise FLOPs distribution for the non-uniform sparsity methods. STR adjusts

the FLOPs across layers such that it has lower FLOPs than the baselines. Note that the other non-uniform

sparsity budgets lead to heavy compute overhead in the initial layers due to denser parameter tensors.

STR can also induce global sparsity (GS) [93] with similar accuracy at ∼ 2× FLOPs compared to layer-wise

93

Table 5.2: STR is up to 3% higher in accuracy while having 33% lesser inference cost (FLOPs) for
MobileNetV1 on ImageNet-1K.

Method
Top-1 Acc

(%)
Params

Sparsity
(%)

FLOPs

MobileNetV1 71.95 4.21M 0.00 569M

GMP 67.70 1.09M 74.11 163M
STR 68.35 1.04M 75.28 101M
STR 66.52 0.88M 79.07 81M

GMP 61.80 0.46M 89.03 82M
STR 64.83 0.60M 85.80 55M
STR 62.10 0.46M 89.01 42M
STR 61.51 0.44M 89.62 40M

for 90-98% sparsity (details in Appendix A.5.1 of Kusupati et al. [145]).

MobileNetV1 on ImageNet-1K

MobileNetV1 was trained on ImageNet-1K for unstructured sparsity with STR to ensure generalizability.

Since GMP is the state-of-the-art baseline as shown earlier, STR was only compared to GMP for 75%

and 90% sparsity regimes. A fully dense MobileNetV1 has a top-1 accuracy of 71.95% on ImageNet-1K.

GMP [282] has the first layer and depthwise convolution layers dense for MobileNetV1 to ensure training

stability and maximize accuracy.

Table 5.2 shows the STR is at least 0.65% better than GMP for 75% sparsity, while having at least

62M (38%) lesser FLOPs. More interestingly, STR has state-of-the-art accuracy while having up to 50%

(40M) lesser FLOPs than GMP in the 90% sparsity regime. All the observations made for ResNet50 hold

for MobileNetV1 as well. The sparsity and FLOPs distribution across layers can be found in Appendix A.4

of Kusupati et al. [145].

5.5.2 Structured Sparsity in RNNs

Experimental Setup

Google-12 is a speech recognition dataset that has 12 classes made from the Google Speech Commands

dataset [259]. HAR-2 is a binarized version of the 6-class Human Activity Recognition dataset [8]. These

two datasets stand as compelling cases for on-device resource-efficient machine learning at the edge. Details

about the datasets can be found in Appendix A.7 of Kusupati et al. [145].

94

FastGRNN [144] was proposed to enable powerful RNN models on resource-constrained devices. Fast-

GRNN relies on making the RNN parameter matrices low-rank, sparse and quantized. As low-rank is a form

of structured sparsity, experiments were done to show the effectiveness of STR for structured sparsity. The in-

put vector to the RNN at each timestep and hidden state have D & D̂ dimensionality respectively. FastGRNN

has two parameter matrices, W ∈ RD×D̂, U ∈ RD̂×D̂ which are reparameterized as product of low-rank

matrices, W = W1W2, and U = U1U2 where W1 ∈ RD×rW , W2 ∈ RrW×D̂, and (U1)
⊤,U2 ∈ RrU×D̂.

rW , rU are the ranks of the respective matrices. In order to apply STR, the low-rank reparameterization

can be changed to W = (W1 ⊙ 1m⊤
W)W2, and U = (U1 ⊙ 1m⊤

U)U2 where mW = 1D, and mU = 1D̂,

W1 ∈ RD×D, W2 ∈ RD×D̂, and U1,U2 ∈ RD̂×D̂. To learn the low-rank, STR is applied on the mW, and

mU vectors. Learning low-rank with STR on mW, mU can be thought as inducing unstructured sparsity on

the two trainable vectors aiming for the right rW , and rU .

The baseline is low-rank FastGRNN where the ranks of the matrices are preset [144]. EdgeML [57]

FastGRNN was used for the experiments with the hyperparameters suggested in the paper and is referred to

as vanilla training. Hyperparameters for the models can be found in Appendix A.6 of Kusupati et al. [145].

FastGRNN on Google-12 and HAR-2

Table 5.3 presents the results for low-rank FastGRNN with vanilla training and STR. Full-rank non-

reparameterized FastGRNN has an accuracy of 92.60% and 96.10% on Google-12 and HAR-2 respectively.

STR outperforms vanilla training by up to 1.67% in four different model-size reducing rank settings on

Table 5.3: STR can induce learnt low-rank in FastGRNN resulting in up to 2.47% higher accuracy than the
vanilla training.

Google-12 HAR-2

(rW , rU)
Accuracy (%)

(rW , rU)
Accuracy (%)

Vanilla
Training

STR
Vanilla

Training
STR

Full rank (32, 100) 92.30 - Full rank (9, 80) 96.10 -

(12, 40) 92.79 94.45 (9, 8) 94.06 95.76
(11, 35) 92.86 94.42 (9, 7) 93.15 95.62
(10, 31) 92.86 94.25 (8, 7) 94.88 95.59
(9, 24) 93.18 94.45

Google-12. Similarly, on HAR-2, STR is better than vanilla training in all the rank settings by up to 2.47%.

Note that the accuracy of the low-rank models obtained by STR is either better or on-par with the full rank

95

models while being around 50% and 70% smaller in size (low-rank) for Google-12 and HAR-2 respectively.

These experiments for structured sparsity in RNNs show that STR can be applied to obtain low-rank

parameter tensors. Similarly, STR can be extended for filter/channel pruning and block sparsity [101, 115,

170] and details for this adaptation can be found in Appendix A.5.2 of Kusupati et al. [145].

5.6 Discussion and Drawbacks

STR’s usage for unstructured sparsity leads to interesting observations as noted in Section 5.5.1. It is clear

from Table 5.1 and Figures 5.4, 5.5 that STR achieves state-of-the-art accuracy for all the sparsity regimes

and also reduces the FLOPs in doing so. STR helps in learning non-uniform sparsity budgets which are

intriguing to study as an optimal non-uniform sparsity budget can ensure minimization of FLOPs while

maintaining accuracy. Although it is not clear why STR’s learning dynamics result in a non-uniform budget

that minimizes FLOPs, the reduction in FLOPs is due to the better redistribution of parameters across layers.

Non-uniform sparsity budgets learnt by STR have the initial and middle layers to be sparser than the other

methods while making the last layers denser. Conventional wisdom suggests that the initial layers should be

denser as the early loss of information would be hard to recover, this drives the existing non-uniform sparsity

heuristics. As most of the parameters are present in the deeper layers, the existing methods tend to make

them sparser while not affecting the FLOPs by much. STR, on the other hand, balances the FLOPs and

sparsity across the layers as shown in Figures 5.6, 5.7 making it a lucrative and efficient choice. The denser

final layers along with sparser initial and middle layers point to sparser CNN backbones obtained using STR.

These sparse backbones can be viable options for efficient representation/transfer learning for downstream

tasks.

Table 5.4: Effect of various layer-wise sparsity budgets when used with DNW for ResNet50 on ImageNet-1K.

Method
Top-1 Acc

(%)
Params

Sparsity
(%)

FLOPs

Uniform 74.00 2.56M 90.00 409M
ERK 74.10 2.56M 90.00 960M
Budget from STR 74.01 2.49M 90.23 343M

Uniform 68.30 1.28M 95.00 204M
Budget from STR 69.72 1.33M 94.80 182M
Budget from STR 68.01 1.24M 95.15 162M

96

Table 5.4 shows the effectiveness/transferability of the learnt non-uniform budget through STR for 90%

sparse ResNet50 on ImageNet-1K using DNW [266]. DNW typically takes in a uniform sparsity budget

and has an accuracy of 74% for a 90% sparse ResNet50. Using ERK non-uniform budget for 90% sparsity

results in a 0.1% increase in accuracy at the cost 2.35× inference FLOPs. Training DNW with the learnt

budget from STR results in a reduction of FLOPs by 66M (16%) while maintaining accuracy. In the 95%

sparsity regime, the learnt budget can improve the accuracy of DNW by up to 1.42% over uniform along with

a reduction in FLOPs by at least 22M (11%).

Table 5.5: Effect of various layer-wise sparsity budgets when used with GMP for ResNet50 on ImageNet-1K.

Method
Top-1 Acc

(%)
Params

Sparsity
(%)

FLOPs

Uniform 73.91 2.56M 90.00 409M
Budget from STR 74.13 2.49M 90.23 343M

Uniform 57.90 0.51M 98.00 82M
Budget from STR 59.47 0.50M 98.05 73M

Similarly, these budgets can also be used for other methods like GMP [282]. Table 5.5 shows that the

learnt sparsity budgets can lead to an increase in accuracy by 0.22% and 1.57% in 90% and 98% sparsity

regimes respectively when used with GMP. Accuracy gains over uniform sparsity are also accompanied by

a significant reduction in inference FLOPs. Note that the learnt non-uniform sparsity budgets can also be

obtained using smaller representative datasets instead of expensive large-scale experiments.

The major drawback of STR is the tuning of the weight-decay parameter, λ and finer-tuning with sinit to

obtain the targeted overall sparsity. One way to circumvent this issue is to freeze the non-uniform sparsity

distribution in the middle of training when the overall sparsity constraints are met and train for the remaining

epochs. This might not potentially give the best results but can give a similar budget which can be then

transferred to methods like GMP or DNW. Another drawback of STR is the function g for the threshold. The

stability, expressivity, and sparsification capability of STR depends on g. However, it should be noted that

sigmoid and exponential functions work just fine, as g, for STR.

97

5.7 Conclusions

This paper proposed Soft Threshold Reparameterization (STR), a novel use of the soft-threshold operator,

for the weights in DNN, to smoothly induce sparsity while learning layer-wise pruning thresholds thereby

obtaining a non-uniform sparsity budget. Extensive experimentation showed that STR is state-of-the-art

for unstructured sparsity in CNNs for ImageNet-1K while also being effective for structured sparsity in

RNNs. Our method results in sparse models that have significantly lesser inference costs than the baselines.

In particular, STR achieves the same accuracy as the baselines for 90% sparse MobileNetV1 with 50%

lesser FLOPs. STR has ∼10% higher accuracy than the existing methods in ultra sparse (99%) regime

for ResNet50 showing the effectiveness of the learnt non-uniform sparsity budgets. STR can also induce

low-rank structure in RNNs while increasing the prediction accuracy showing the generalizability of the

proposed reparameterization. Finally, STR is easy to adapt and the learnt budgets are transferable.

98

Chapter 6

LLC: Accurate, Multi-purpose Learnt

Low-dimensional Binary Codes

6.1 Overview

Learning binary representations of instances and classes is a classical problem with several high potential

applications. In modern settings, the compression of high-dimensional neural representations to low-

dimensional binary codes is a challenging task and often require large bit-codes to be accurate. In this chapter,

we propose a novel method for Learning Low-dimensional binary Codes (LLC) for instances as well as

classes. Our method does not require any side-information, like annotated attributes or label meta-data,

and learns extremely low-dimensional binary codes (≈ 20 bits for ImageNet-1K). The learnt codes are

super-efficient while still ensuring nearly optimal classification accuracy for ResNet50 on ImageNet-1K.

We demonstrate that the learnt codes capture intrinsically important features in the data, by discovering an

intuitive taxonomy over classes. We further quantitatively measure the quality of our codes by applying it

to the efficient image retrieval as well as out-of-distribution (OOD) detection problems. For ImageNet-100

retrieval problem, our learnt binary codes outperform 16 bit HashNet using only 10 bits and also are as

accurate as 10 dimensional real representations. Finally, our learnt binary codes can perform OOD detection,

out-of-the-box, as accurately as a baseline that needs ≈ 3000 samples to tune its threshold, while we require

none. Code is open-sourced at https://github.com/RAIVNLab/LLC.

99

https://github.com/RAIVNLab/LLC

6.2 Introduction

Embedding data in low-dimensional binary space is a long-standing machine learning problem [256]. The

problem has received a lot of interest in the computer vision (CV) domain, where the goal is to find binary

codes that capture the key semantics of the image, like, objects present in the image or interpretable attributes.

Section 6.3 covers the literature on learning binary codes and their applications.

In addition to learning semantically meaningful representations of the instances, low-dimensional binary

codes allow efficiency in a variety of large-scale machine learning (ML) applications. Low-dimensional

codes are crucial in extreme classification with millions of classes [23, 122, 48] and also critical in efficient

large-scale retrieval settings [167, 50, 264].

Compressing information into binary codes is challenging due to its highly non-smooth nature while

requiring the preservation of relevant information in an instance/class. This might explain the lack of good

classification accuracy for existing classification-based embedding techniques [113, 45]. To address that,

traditional methods often relied on side-information like attributes to construct class codes and then use that

to learn the instance codes [56, 4].

Learning binary embeddings can be posed in a variety of formulations like pairwise optimization [142]

or unsupervised learning [36, 216], in this work we focus on learning binary codes using a given labeled

multi-class dataset, e.g., ImageNet-1K. This allows us to couple the representation (code) learning of both

instances and classes thus enabling us to capture the underlying semantic structure efficiently to assist in

downstream tasks like classification, retrieval etc.

We propose LLC, a method to learn both class and instance codes via the standard classification task

and its setup without any side-information. Our Learning Low-dimensional binary Codes (LLC) technique,

formulates the embedding (code) learning problem as that of learning a low-dimensional binary embedding

of a standard deep neural “backbone”. Instead of directly training for the low-dimensional binary instance

codes, we propose a two-phase approach. In the first phase, LLC learns low-dimensional (k-bit) binary codes

for classes that capture semantic information through a surrogate classification task. Then in the second phase,

LLC uses these learnt class codes as an efficient alternative to learning instance codes in sub-linear cost (in

the number of classes, L) using the Error-Correcting Output Codes (ECOC) approach [64]. This two-phase

pipeline helps in the effective distillation of required semantic similarity between instances through the learnt

100

class codes. For example, on ImageNet-1K with ResNet50, LLC is able to learn tight 20-bit codes that can

be used for efficient classification and achieve 74.5% accuracy compared to the standard baseline 77% on

ImageNet-1K (Section 6.5.1). Furthermore, we observe that the learnt 20-bit class codes capture intuitive

taxonomy over classes (Figure 6.1) while the instance codes retain the distilled class similarity information

useful in efficient retrieval and OOD detection.

Retrieval. To further study, the effectiveness of our learnt binary codes, we apply them to hashing-based

efficient retrieval, where the goal is to retrieve a large number of similar instances with the same class

label in top retrieved samples. Deep supervised hashing is a widely studied problem with several recent

results [34, 234] which are designed specifically for the learnt hashing-based retrieval. Interestingly, our

learnt instance codes through the LLC routine provide strikingly better performance while not being learnt

explicitly for hashing. For eg., using AlexNet, with just 32-bit codes we are can provide 5.4% more accurate

retrieval than HashNet’s 64-bit codes on ImageNet-100 (Section 6.5.2).

OOD Detection. We similarly apply LLC based learnt binary codes to detect OOD instances [104].

We adopt a simple approach based on our binary codes: if an instance is not within a Hamming distance

of 1 to any class codes, we classify it as OOD. That is, we do not fine-tune our OOD detector for the new

domain, which is critical in practical settings. In contrast, baseline techniques for OOD detection require a

few samples (eg., ≈ 3000 for ImageNet-750) from the OOD domain to fine-tune thresholds, while we require

no samples yet reaching similar OOD detection (Section 6.5.3).

In this work, we make the following key contributions:

• LLC method to learn semantically-rich low-dimensional binary codes for both classes & instances.

• Show that the learnt codes enable accurate & efficient classification: ImageNet-1K with 20-bits.

• Apply LLC to image retrieval task, and demonstrate that it comfortably outperforms the instance code

learning methods for hashing-based retrieval on ImageNet-100.

• Finally, use codes from LLC for strong & sample efficient OOD detection in practical settings.

101

6.3 Related Work

Binary class codes were originally aimed at sub-linear training and prediction for multi-class classification.

The Error-Correcting Output Codes (ECOC) framework [64, 7, 72] reformulated multi-class classification

as multi-label classification using k-bit codes per class (codebook). The learning of optimal codebook is

NP-complete [47] which lead to use of random codebooks [113, 45] in traditional ML. However, there were

a few codebook learning [16, 280, 263, 13] and construction schemes using side-information from other

modalities [4]. The lack of a strong learnable feature extractor often deterred the gains these codebooks

provide for the classification and effective learning of instance codes. Attribute annotations can also help in

constructing class codes [5]. These binary codes are either explicitly annotated [75] or discovered [205, 76].

Attributed-based learning also ties into leveraging the class codes for zero/few-shot learning [150, 151, 4, 193]

expecting some form of interpretability.

Most methods that use class codes as supervision can produce instance codes [64]. However, the stan-

dalone literature of instance codes comes from requirements in large-scale application like retrieval (hashing).

In the past, most hashing techniques that created instance codes were based on random projections [50, 45, 44],

semantics [217, 56] or learnt through metric learning [142, 141, 192, 140], clustering [261, 216] and quantiza-

tion [84]. Deep learning further helped in learning more accurate hashing functions to generate instance codes

either in an unsupervised [36, 227] or supervised [167, 34, 234, 276] fashion. We refer to [176, 279, 256] for

a more thorough review on deep hashing methods.

Finally, embedding-based classification [45, 271, 23, 88] enables joint low-dimensional representation

learning for both classes and instances with an eye on sub-linear training and prediction costs. After distilling

the key ideas from the literature, we aim to a) learn semantically rich low-dimensional representations for

both classes and instances together, b) have these representations in the binary space, and c) do this with

minimal dependence on side-information or metadata.

LLC, to the best of our knowledge - for the first time, jointly learns low-dimensional binary codes for

both classes and instances using a surrogate classification task, without any side-information (Section 6.4).

The learnt class codes capture intrinsic information at the semantic level that helps in discovering an intuitive

taxonomy over classes (Figure 6.1). The learnt class codes then anchor the instance code learning which

results in tight and accurate low-dimensional instance codes further used in retrieval (Section 6.5.2). Finally,

102

both the learnt class and instance codes power extremely efficient yet accurate classification (Section 6.5.1)

and out-of-distribution detection (Section 6.5.3).

6.4 Learning Low-dimensional Binary Codes

The goal is to learn a binary embedding (code) function g : X → {−1, 1}k where X is the input domain

and k is the dimensionality of the code. We focus on learning embeddings using a labelled multi-class

data [113]. That is, suppose we are given a labelled dataset D = {(x1, y1), . . . , (xn, yn)} where xi ∈ X is

an input point and yi ∈ [L] is the label of xi for all i ∈ [n]. Then, the goal is to learn an instance embedding

function g : X → {+1,−1}k and class embeddings hq ∈ {+1,−1}k for all q ∈ [L] such that g(xi) = hyi

and g(xi) = g(xj) if and only if yi = yj .

Intuitively, for large-scale datasets, g(x) and hq should capture key semantic information to provide

accurate classification, thus allowing their use in application domains like retrieval or OOD detection. Note

that while we present our technique for learning embeddings using multi-class datasets, it applies more

generally to multi-labeled datasets as well.

Instance and Class Code Parameterization. For learning such embedding function, we assume access

to a deep neural architecture F (· ; θF) : X → Rd that maps the input x ∈ X to a d-dimensional real-valued

representation. θF is a learnable parameterization of the network; we drop θF from F wherever the meaning

is clear from the context. For example, ResNet50 is one such network that encodes 224× 224 RGB images

into d = 2048 dimensions.

Now, given a network F and x ∈ X , we formulate embedding function of x and the corresponding

multiclass prediction scores ŷ ∈ ZL as:

g(x) := B (P · F (x; θF)) , ŷ := B(C) · g(x) , (6.1)

where P ∈ Rk×d maps F (x) into k-dimensions and B(a) = sign(a) ∈ {+1,−1} is the standard bina-

rization/sign operator applied elementwise (with the assumption sign(0) = +1). Finally, C ∈ RL×k, and

ŷ = B(C) · g(x) represents the scores of each class for an input x. Note that for a class ℓ ∈ [L], B(Cℓ)

103

(where Cℓ represents the ℓ-th row of C) is the learnt binary class embedding (code) of class ℓ ∈ [L], and

g(x) = B(P · F (x; θF)) is the learnt instance embedding (code) of instance x. Note that (6.1) is a general

purpose formulation for the problem of learning class and instance codes.

6.4.1 The LLC Method

Phase 1: Codebook Learning – B(C). Given labelled examples D, we use standard empirical risk

minimization to learn a multi-class classifier, i.e., we solve

min
C,P,θF

∑
(xi,yi)∈D

L (B(C) · (P · F (xi; θF)) ; yi) , (6.2)

where L : RL × [L]→ R+ is the standard multi-class softmax cross-entropy loss function. This is a standard

optimization problem that can be solved using standard gradient descent methods or other sub-gradient

based optimizers. However, one challenge is that B(C) is a binary matrix and B is a binary function, so the

gradients are 0 almost everywhere. Instead, we use the Straight-Through Estimator (STE) [18] technique

popular in binary neural networks domain [206], to optimize for C through the binarization. Intuitively, STE

uses binarization/sign function in the forward pass, but in the backpropagation phase, it allows the gradients

to flow straight-through as if it were real-valued. The codebook, B(C) refers to the collection of k-bit class

codes learnt in this process.

For ImageNet-1K, we learnt unique binary codes, B(Cℓ), for every class ℓ ∈ [L] of the 1000 classes

using only 20-bits, only twice the information-theoretic limit. As with the class representations from a

linear classifier, these class codes do capture intrinsically important features that help in discovering intuitive

taxonomy over classes (Section 6.4.2) among various applications (Section 6.5).

Phase 2: Instance Code Learning – B(P · F (x; θF)). Several existing techniques model C and P in

different ways to learn an embedding function similar to (6.1). However, these methods often try to only learn

instance codes and have challenges in maintaining high accuracy [34, 36] in a variety of applications because

optimization problem (6.2) is challenging and might lead to significantly sub-optimal classification error. For

example, for ImageNet-1K classification with ResNet50, the accuracy for our trained model (20-bits) at this

stage is 72.5% compared to the standard 77%.

104

To remedy this, we further optimize our embeddings using the ECOC framework [64] for multi-class

classification, which essentially transforms the multi-class problem into a multi-label problem, which in turn

is k independent binary classification problems. That is, we use the k-bit codes learnt for each class as the

supervision to further train F (· ; θF) and P:

min
θF ,P

∑
(xi,yi)∈D

k∑
j=1

BCE (σ(Pj · F (xi; θF)) ; (B(Cyi,j) + 1) /2) , (6.3)

where σ is the sigmoid/logistic function, BCE is the binary cross-entropy loss between the j-th bit of

instance xi’s embedding, and the j-th bit extracted from the class embedding of it’s label yi (the function

z 7→ (z + 1)/2 is used to map {+1,−1} to {1, 0} to make it a simple binary classification problem per each

bit). We use gradient based optimization to learn θF and P. As mentioned earlier, ECOC framework allows

us to correct errors in classification. For example, with just 20 bits on ImageNet-1K dataset, the method now

achieves 74.5% accuracy with ResNet50 backbone.

The advantage of this two-phase pipeline where we start with a codebook learning for classes is that the

cost of learning instances codes reduces to a bottleneck of k-dims (≪ L) instead of the usual L . Furthermore,

these learnt low-dimensional binary codes for both classes and instances help in large-scale applications via

efficient classification and retrieval (see Section 6.5). Note that, unlike attribute-based methods [151], we do

not require additional meta-data, but learn binary codes by only using the standard classification task. This

also circumvents the potential instabilities of pairwise optimization in instance binary code learning which

often leads to poor class codes due to codebook collapse. At the end of LLC routine, we have learnt the

instance codes, B(P ·F (x; θF)), and class codes, B(C) to be used for downstream applications. Algorithm 1

presents LLC in full.

Overall, we present a simple yet scalable method to learn low-dimensional (exact) binary codes for both

classes and instances which in turn could power multi-class classification with sub-linear costs (in terms of

L) and efficient retrieval for large-scale applications. Using our method, we can consistently learn unique

low-dimensional binary codes for all 1000 classes in ImageNet-1K using only 20-bits (which is twice the

information-theoretic limit of ⌈log2(1000)⌉). Next, we discuss the learnt codebook’s intrinsic information

about the classes and their structure.

105

6.4.2 Discovered Taxonomy and Visualizations

Figure 6.1: Discovered taxonomy over 50 classes of ImageNet-1K using the learnt 20-bit class codes. Related species
are well clustered while pushing away unrelated ones. Figure 3 in Appendix D of Kusupati et al. [146] contains the
codebook.

After learning the 20-bit binary codebook for 1000 classes of ImageNet-1K, we used the class rep-

resentation from B(C) of the first 50 classes to discover an intuitive taxonomy through agglomerative

clustering [187]. Figure 6.1 shows the discovered hierarchy. This hierarchy effectively separates birds from

amphibians; frogs and chickens are on extremes of the taxonomy and brings species with shared similarities

closer (lizards & crocodiles; marine life). While the taxonomy is not perfect, the 20-bits do capture enough

important information that can be used downstream.

Figure 6.2 shows the pair-wise inner-product heat maps for all the 1000 classes using 20-bits and 2048-

dimensional real representation; the comparison reveals that 20-bits indeed highlights the same substructures

Algorithm 1 The LLC Method
Input: D, F and B
Output: C, P and θF

1: Codebook Learning – B(C): Solve (6.2) using ERM and STE to get C, P and θF -

C,P, θF ← argmin
C,P,θF

∑
(xi,yi)∈D

L (B(C) · (P · F (xi; θF)) ; yi) .

2: Instance Code Learning – B(P · F (x; θf)): Further optimize P and θF by solving (6.3) using ECOC
framework and ERM by fixing C -

θF , P ← argmin
θF ,P

∑
(xi,yi)∈D

k∑
j=1

BCE (σ(Pj · F (xi; θF)) ; (B(Cyi,j) + 1) /2) .

106

as the higher dimensional real-valued embeddings. Appendix D of Kusupati et al. [146] has a more detailed

discussion about quantitatively evaluating the discovered hierarchy and more visualizations.

(a) 20-bit codes (b) 2048-d real representations

Figure 6.2: The pair-wise inner product heat maps of class representations a) learnt 20-bit codes & b) learnt 2048
dimensional real representations for the 1000 classes in ImageNet-1K. Similar sub structures are highlighted in both
heatmaps and often correspond to local hierarchy present in the classes thus making a case that 20-bit codes distill
enough information to capture hierarchy of the classes.

6.5 Applications

In this section, we discuss three applications of the learnt low-dimensional binary codes: 1) efficient

multi-class classification (Section 6.5.1), 2) efficient retrieval (Section 6.5.2), and 3) out-of-the-box out-of-

distribution (OOD) detection (Section 6.5.3). We also present ablation studies on codebook learning, feature

separability and classification (Section 6.5.4).

6.5.1 Efficient Multi-class Classification

Recall that the proposed LLC algorithm outputs a) the learnt class codes (codebook), B(C) and b) an encoder

that produces instance codes, B(P · F (x; θF)) for x. We define a class codebook as a collection of L binary

vectors, one for each class in the dataset, that can then be used for classification of a test instance x. We can

use several “decoding" routines to classify an instance x, given its encoding and the learnt codebook. Below

we discuss two decoding schemes that are diametrically opposite in terms of the inference cost. Also, note

that the standard linear classification with real-valued representation and classifiers scale as O(L) in terms of

107

computational complexity and model size.

Decoding Schemes

Exact Decoding (ED). Exact Decoding scheme expects the Hamming distance between the generated

instance code, B(PF (x; θF)), and the ground truth class code, B(Ci) to be exactly 0. That is, we can

hash the class codes in a table, and then ED requires only a O(1) hash-table lookup for a given instance.

Consequently, the inference time for ED is nearly independent of L. Naturally, the decoding scheme is

highly stringent and would misclassify an instance if the instance binary code and the ground truth code do

not match in even a single bit. Surprisingly, this highly efficient decoding scheme still provides non-trivial

accuracy (see Table 6.1 and Section 6.5.1).

Minimum Hamming Decoding (MHD). Minimum Hamming Decoding is akin to the Maximum Dot

Product used by standard linear classifiers. For an instance code, we evaluate the Hamming distance with all

the L class codes and output the class with the least Hamming distance. Note that the Hamming distance

over binary codes can be computed using XOR operations that are implemented significantly more efficiently

than the floating-point operations [206]. Even though, technically, computational complexity and model size

of MHD scales as O(L) but the real-world implementations should be an order of magnitude faster than

standard classifiers. In fact, for large number of classes L, the efficiency of MHD can be further improved

by using approximate nearest neighbour search [50, 19, 179]. Appendix A of Kusupati et al. [146] has the

mathematical presentation of the decoding schemes.

See Section 6.6 for more discussion on potential decoding schemes. Also see Section 6.5.4 for ablation

studies about the two decoding schemes along with feature separability (linear vs Hamming).

Empirical Evaluation

ImageNet-1K [215] is a widely used image classification dataset with 1000 hierarchical classes. Our

classification experiments use ResNet50 [98] and are trained using the ∼1.3M training images. Images

were transformed & augmented with standard procedures [145, 266]. All the implementations were in

PyTorch [196] and experimented on a machine with 4 NVIDIA Titan X (Pascal) GPUs.

108

Table 6.1: Classification performance on ImageNet-1K with
ResNet50 using various class codebooks for training.

Codebook
Unique
Codes

ED
Accuracy (%)

MHD
Accuracy (%)

Random 20-bits 1000 64.07 66.91
CCA 20-bits 813 55.17 57.03
SVD 20-bits 969 65.12 69.18
LLC 20-bits (Ours) 1000 68.82 74.57

Table 6.2: Classification accuracy on ImageNet-1K
vs. bit length of the learnt class codebooks (§6.5.4).

LLC Length
Unique
Codes

ED
Accuracy (%)

MHD
Accuracy (%)

15 bits 990 67.20 71.03
20 bits 1000 68.82 74.57
25 bits 1000 67.93 74.79
30 bits 1000 67.51 75.13

When applied to ImageNet-1K, the first phase of LLC, learnt a 20-bit codebook with 1000 unique class

codes, i.e., every class has its own distinct binary code. We warm start the second phase of LLC by the learnt

ResNet50 backbone along with the 20 dimensional projection layer. See Appendix C of Kusupati et al. [146]

for the hyperparameter values and other training details.

A key feature of LLC is that it jointly learns both the class codebook as well as instance codes. Several

existing techniques decouple this learning process where the codebook is constructed separately and is then

used to train the instance codes [113, 47, 7, 72, 4, 263]. We evaluate the advantage of the joint learning

approach of LLC by comparing its performance against three strong baselines: i) Random codebook of 20-

bits, ii) 20-bit CCA codebook [4, 263, 280] & iii) 20-bit SVD codebook. Previous works [113, 47, 7] argued

that random codebooks are competitive to the ones constructed using side-information. 20-bit CCA and SVD

codebooks aim to capture the hierarchy that is amiss in the random codebook. The 20-bit SVD codebook is

built using the SVD of 2048 dimensional linear classifiers (for each class) in the pre-trained ResNet50, and

binarizing it. 20-bit CCA codebook is the binarized version of the transformed label embedding projected

on to 20 components learnt using CCA between 2048 dimensional representations of 50K samples from

the ImageNet train set and their one-hot label embeddings. Despite being able to capture the hierarchy

information, both 20-bit CCA/SVD codebooks suffer from clashes reducing their overall effectiveness.

Next, using the baselines codebooks and the corresponding learnt instance codes, we compute class

predictions for each test instance using the Exact Decoding (ED) & Minimum Hamming Decoding (MHD)

schemes mentioned in the previous section. We evaluate all the methods using top-1 accuracy on the

ImageNet-1K validation set. Baseline ResNet50 architecture represents the maximum accuracy we can hope

to achieve using binarized instance+class codes. Note that this baseline classifier requires O(L) computation

over 16-bit real numbers, and achieves Top-1 accuracy of 77%.

Table 6.1 compares the accuracy of LLC (with 20-bit codebook) against baseline codebooks mentioned

109

above. Note that MHD with LLC codebook is 74.5% accurate, i.e., despite using only 20-dimensional

binary representation it is only about 2.5% less accurate than standard ResNet50 that uses 2048 dimensional

real-valued representation. Furthermore, we observe that compared to standard codebooks like SVD, our

jointly learnt codebook is 5% more accurate.

Interestingly, Exact Decoding (ED) – which is O(1) inference scheme – with LLC codebook is nearly as

accurate as the SVD codebook with MHD scheme and is about 12% more accurate than the CCA codebook

with ED scheme. Naturally, codebook length/dimensionality plays a critical role in classification accuracy;

see Section 6.5.4 for a detailed ablative study on this aspect. Finally, the gains in efficiency should be even

more compelling for problems with millions of classes [244].

6.5.2 Efficient Retrieval

The goal in retrieval is to find instances from a database that are most similar to a given query. Traditional

retrieval approaches, use a fixed metric to retrieve "similar points", with data structures like LSH for efficient

retrieval. Recent progress in Deep Supervised Hashing (DSH) [167] offer significantly more compelling

solutions by learning the hashing function itself. That is, DSH aims to learn binary codes for each instance

s.t. a pair of instances are embedded closely iff they belong to the same class, and then learns the hashing

function end-to-end using a small train set.

As LLC also learns instance codes to reflect class membership, we can directly use our learnt encoder

as a hashing function for given instances. For each query, the most relevant samples from the database are

retrieved based on the minimum Hamming distance. Similar to the decoding schemes in classification, the

retrieval can be optimized using approximate nearest neighbor search. Finally, the efficiency gains provided

by using bits instead of real numbers should enable deployment of LLC based retrieval for efficient high

recall portions of retrieval pipelines.

Empirical Evaluation

Following DSH literature, we evaluate hashing-based image retrieval on ImageNet-100, a benchmark dataset

created by Cao et al. [34]. ImageNet-100 has 100 classes randomly sampled from ImageNet-1K. All the

validation images of these classes are used as query images, all the training images (∼ 1300 per class) of

110

Table 6.3: Efficient image retrieval on ImageNet-100 using
AlexNet compared using MAP@1000 (Appendix B of Kusu-
pati et al. [146]) across 16 – 64 bits.

Method 10 bits 16 bits 32 bits 48 bits 64 bits

HashNet [34] 0.1995 0.2815 0.4300 0.5270 0.5124
Greedy Hash [234] 0.2860 0.4247 0.5412 0.5720 0.5895
LLC (Ours) 0.3086 0.4305 0.5565 0.5749 0.6000

Table 6.4: Comparison of LLC based retrieval
vs real-valued representations with ResNet50 on
ImageNet-100 using MAP@1000.

Representation 8 dims 10 dims 64 dims

LLC (1 bit) - 0.6458 0.6773
Real (16 bits) 0.5041 0.6657 0.7794

these 100 classes are used as database images. Finally, 130 samples per class from the database are used as

the training set for learning binary codes or hashing functions.

We compare against HashNet [34] and Greedy Hash [234] for image retrieval using learnt instance

codes. HashNet learns the bit representations of instances using a pairwise optimization with positive and

negative instance pairs. HashNet is a representative baseline for an alternative way of learning binary instance

codes compared to LLC. On the other hand, Greedy Hash learns only the instance codes using straight-

through-estimator via the classification task. Note that LLC learns both class codes as well as instance

codes differentiating it from Greedy Hash style methods. Learnt instance codes are a byproduct of efficient

classification as opposed to baselines that optimize for them.

We use the Mean Average Precision (MAP@1000) metric for evaluation. The MAP@1000 calculation

code of HashNet [34] is erroneous and has propagated to several papers in the literature. We use the corrected

version, hence the accuracy numbers are different from the original paper. Please see Appendix B of Kusupati

et al. [146] for the corrected version, the changes required along with an example and a brief discussion. We

used the publicly available pre-trained HashNet models [35] and Greedy Hash [234] code to recompute the

MAP@1000.

Following HashNet [34], we use AlexNet [137] as the backbone and warm-start it with a pre-trained

model on ImageNet-1K. We add a projection layer to the backbone and learn the instance and class codes.

We also report retrieval numbers with ResNet50 [98] and compare LLC based retrieval numbers to learnt

real-valued representations. Please see Appendix C of Kusupati et al. [146] for the training details and

hyperparameters of efficient retrieval pipelines.

Table 6.3 shows the performance (evaluated using MAP@1000) for HashNet, Greedy Hash, and LLC

across various code lengths. LLC outperforms HashNet across all code lengths (16 – 64) by at least 4.79%

on MAP@1000. LLC is also better than Greedy Hash across all the bit lengths. LLC also outperforms 16-bit

HashNet by 2% & 15% using only 10 & 16 bits respectively. Finally, 32-bit LLC comfortably outperforms

111

both 48 & 64-bit HashNet showcasing the effectiveness of our learnt tight bit codes. Note that LLC, learning

both instance and class codes, is effective in retrieval even though it was designed for classification.

We repeat the retrieval experiments with ResNet50. Table 6.4 shows the MAP@1000 for LLC with 10

and 64 bits along with the same dimensional real-valued representations. The 10-bit LLC is only 2% lower

than 10 dimensional real-valued representation even though theoretically, the cost associated with 10-bit

LLC based retrieval is about 256× less than 10 dimensional real representations.

The 64 bit and 10 bit LLC outperforms 10 and 8 dimensional real-valued representations respectively at a

much cheaper retrieval cost, at least by an order of magnitude. More discussion about the use of binary codes

for retrieval at a large scale can be found in Section 6.6. Finally, 10-bit LLC with ResNet50 outperforms

the best performing AlexNet based models for the same task, suggesting ResNet50 is a more appropriate

architecture for benchmarking DSH literature.

6.5.3 Out-of-Distribution (OOD) Detection

For a multi-class classifier, detecting an OOD sample is very important for robustness [104] and sequential

learning [249]. Multi-class classifiers are augmented with OOD detection capability by setting a threshold on

heuristics like maximum logit which is tuned using a validation set.

We focus on the scenario where the ratio of in-distribution to out-of-distribution samples in the validation

set is not representative of the deployment. This throws off the methods that try to maximize metrics, F1,

using a validation set. Our learnt class codebook from LLC comes with over-provisioning (for ease of

optimization) resulting in unassigned codes. These unassigned codes can be treated as OOD out-of-the-box

with no tuning whatsoever. That is, we classify an instance as OOD if its instance code does not match exactly

with the code of a class in our learnt codebook.

Appendix E of Kusupati et al. [146] discusses the OOD detection experiments on ImageNet-750 [249] &

MIT Places [281]. At a high level, LLC based out-of-the-box OOD detection (with a learnt 20-bit codebook

on ImageNet-1K) achieves nearly the same OOD detection accuracy as a baseline [104] that tries to maximize

F1 using a validation set. We would like to stress that while such a method needs ≈ 3000 points in the

validation set, our method requires no samples, which is critical in several practical settings.

112

6.5.4 Ablation Studies

Classification Accuracy vs Number of Bits. Table 6.2 shows the trade-off in classification accuracy with

the variation in the length of the learnt codebook for ImageNet-1K. LLC learns a 15-bit codebook with

only 990 unique codes leading to a loss of accuracy due to code collapse in both ED and MHD schemes

(1.62% & 3.54% compared to 20-bit codebook respectively). An interesting observation is that the ED

accuracy gradually goes down after 20-bits while the MHD accuracy keeps on increasing. The phenomenon

of increasing accuracy with MHD is probably due to the increase in the capacity of both instance and class

codes. However, the decrease in ED accuracy after 20-bits can be explained through the hardness in exactly

predicting every bit in the instance code to match the ground truth class code. Our classification model with

20-bits on average gets 19.2 bits correct but the model with 30-bits only gets 28.5 bits right. This increase

in uncertainty coupled with the stringent ED scheme leads to a slight dip in accuracy as the code length

increases. However, this also provides us with a path for more accurate decoding schemes while being

efficient as discussed in Section 6.6.

Classification Accuracy vs Faster Codebook Learning. Codebook learning phase of LLC is expensive,

this motivated us to speed up codebook learning at a minimal loss in accuracy. One way is to warm-start the

codebook using the ones built with SVD/CCA (see Section 6.5.1). While these codebooks suffer from code

collapse, with further training, they start to learn 1000 unique codes quickly. Using these final codebooks

gets to a comparable (1% drop) accuracy as the 20-bit learnt LLC codebook but at a relatively cheaper

training. Another option is to use only a portion of the data and a much smaller network to learn the codebook.

We sampled 50K training images and use a MobileNetV1 [111] (which has about 6× less parameters and

compute than ResNet50) to learn a 20-bit codebook which gets to ED and MHD accuracy of 66.62% &

72.55% which is only 2% lower than the end-to-end learnt codebook but at a fraction of the training cost (3

hrs vs 2 days).

Linear vs Hamming Separability. Fitting a deep neural network to the learnt codebook for classification

results in warping of the feature space considerably. The final classification space is a hypercube with the

vertices being apart by Hamming distance of 1. To verify linear separability, we take the learnt, frozen

ResNet50 trained for the 20-bit classification problem and fit a linear classifier on top of the 2048 dimensional

113

features. Linear classifier quickly reaches a top-1 accuracy of 75.51%.

The opposite does not seem to be true. We extract and freeze the backbone of a pre-trained ResNet50 and

train a projection layer to fit the 20-bit learnt codebook. This gets to top-1 accuracy of only about 21% with

the ED scheme. However, we also observed that unfreezing and finetuning the last 3 layers of the backbone

recovers the top-1 ED accuracy to roughly 68%.

These experiments show 1) Hamming separability inherently enables linear separability, 2) Linear

separability does not imply Hamming separability & 3) with enough overparameterization, linearly separable

space can be warped to support Hamming separability. Hamming separability automatically provides linear

separability with increased accuracy of ∼ 1% over the MHD scheme which allows for an option for using a

more powerful yet simple classifier, in case of accuracy requirements.

Independent vs Nested Codebook Learning. Consider a scenario with varied computational budgets for

classification. We could either train independent k-bit models (eg., k = 20, 25, 30) and use them according to

the budget, or we could learn a single nested codebook-based model that can be readily adapted to any of these

settings. While training a codebook of larger bit length like k = 30, we can ensure that the first m-bits, m < k,

also form a codebook at minimal additional cost. We were able to stably train a 30-bit codebook and also

extract 20, 25-bit codebooks from it all of which are as accurate as independently trained codebooks. These

nested codebooks have the potential to be used based on the computational resource availability for efficient

classification without having to retrain. All this capabilities are enabled by Matryoshka Representation

Learning [147] presented in Chapter 2.

6.6 Discussion and Conclusions

We designed LLC to learn low-dimensional binary codes for instances as well as classes, and utilized

them in applications like efficient classification, retrieval, OOD detection. A key finding is that combining

class code learning with ECOC framework to learn instance code leads to a stable training system that can

accurately capture the semantics of the class data despite just 20-dimensional code. Traditionally, methods

like HashNet, KLSH [141] attempt to learn hashing function using pairwise loss functions by embedding

instances such that points from the same class are embedded closely and points from different classes are

114

far. But such formulations are hard to optimize, due to the risk of embedding collapse. We observe that

LLC by using instance-wise formulation can train stably with significantly higher performance. Another

fascinating observation is that while architectures like ResNet50 have large intermediate (2048 dimensional

real) representations, they can be compressed to just 20 bits without significant loss in accuracy! Even though

quantization [206] literature demonstrates strong compression of representations, we believe such stark

compression has been elusive so far and is worth further exploration from the efficient inference viewpoint.

Limitations. Our visualization (see Figure 4 in Appendix D of Kusupati et al. [146]) indicates that each

bit does not correspond to some easily interpretable attributes, unlike DBC [205]. We believe incorporating

priors with weak supervision as well as cross-modal learning could help LLC get past this limitation.

ED and MHD schemes are on two ends of the computation vs accuracy spectrum and do not transition

smoothly. Designing decoding schemes that can compromise between these two extreme decoding schemes

might be able to address this limitation.

Strong encoders are needed to warp the feature space to ensure Hamming separability. For example, using

a 20-bit learnt codebook with ED scheme, ResNet50 gets to 68.8% top-1 accuracy whereas MobileNetV1

can only reach 53.23%. This also ties into the argument that classification is a trade-off between encoder and

decoder costs. Making decoders efficient and cheap, puts the burden on encoding the information in the right

way and higher expressivity often helps in that cause.

Future Work. There are several exciting directions that we would like to explore. In principle, LLC can

easily incorporate side-information when needed with simple additional losses during training. The additional

regularization losses can also help in incorporating natural constraints on the codebook [47, 7] or can enable

attribute-based class codes for interpretablity [75, 76, 151] making them exciting directions to explore. LLC

algorithm can also be used to encode instances of multiple modalities like audio, visual, language to the

same learnt low-dimensional binary space. This might help in effective cross-modal supervision along with

retrieval among various other applications.

Potential in Large-Scale Applications. While our focus was on designing low-dimensional accurate

binary codes, several studies [206, 116] have shown that efficiency afforded by bit-wise computation over

115

floating-point computation can lead to almost an order of magnitude speed-up. Furthermore, as the number

of classes increases, the learning of class codebooks helps in training representations in sublinear costs [45]

along with sublinear inference (in L). We expect LLC algorithm to have its efficiency benefits outweigh the

accuracy drop for large multi-class/multi-label problems, like objection recognition using ImageNet-22K [55],

document tagging [244, 200] and instance classification [264]. The efficiency aspect of the binary codes has

not been fully explored in this paper as the main computational bottleneck for ImageNet-1K classification is

the deep neural network featurizer.

Lastly, LLC based efficient retrieval can be used for the initial high-recall shortlisting of a search pipeline,

which is followed by high precision models operating on more expressive yet expensive embeddings. We

leave practical demonstration of such a system at web-scale for future work.

116

Chapter 7

Discussion, Conclusion and Future Work

I believe that the works presented in this thesis are a right step towards adaptive intelligence in web-scale

AI/ML systems. A testament to this is the wide-spread adoption of these works in real-world deployments at

the internet scale across both industry and open-source.

Matryoshka representation learning (MRL) [147] presented in Chapter 2 is now a default design choice

for quite a few dense embedding applications. Most notable are the state-of-the-art text embedding models

ada-v3 by OpenAI [194] and gecko by Google [154] that help power a wide range of retrieval and retrieval

augmented generation (RAG) [159] across millions of users. Google also made MRL a default for many of

its embedding models powering web-scale image products – serving over a billion users daily. Pinterest has

used MRL as part of their LinkSage [199] recommendation system. Further, the simplicity and scalability of

the idea attracted a lot of interest from the open-source community through Hugging Face [74] where several

of the most popular embedding models [3, 2] are powered by MRL. This further led to vector database and

retrieval communities implement naive version of adaptive retrieval at scale [236]. Adding to this, improved

training dynamics due to MRL, led to state of the art cross modal retreival models [247]. Overall, MRL, either

through pretraining or fine-tuning, has become a drop in design choice for any dense vector representation

based models and systems – owing to inherent adaptivity.

In a similar vein other works have been used extensively or showed promise at scale. AdANNS [209],

presented in Chapter 3, built to levergae MRL for web-scale search systems has show to scale to tens of billions

of documents while enabling adaptive inference on a fixed ANNS index for the first time. MatFormer [63],

117

presented in Chapter 4, is tested for web-scale applications as the next generation Transformer architecture

for seamless compute adaptivity and also has introduced adaptive query processing for web-scale search,

for the first time. Further, STR [145] presented in Chapter 5 has been used extensively for efficient models

through pruning at companies like Apple while also helping the community rethink fundamentals of sparsity.

Finally, LLC [146] presented in Chapter 6 when combined with MRL was able to encode 1 billion images

with 8 bytes per image – totaling to 8 GB, at least 4× cheaper than exisiting techniques – while retraining the

recall during retrieval. Owing to the nested structure and binary precision, the representation acts as its own

search index and can enable near O(1) search on a regular smartphone, thus paving the way for web-scale

offline search. This further helps us in “Indexing the World” in a differentiable fashion, allowing for data and

interactions to control the knowledge organization for an accurate and efficient knowledge discovery.

I envision a future where AI systems cater to every user accurately, reliably and equitably based on their

needs in real-time. To realize this goal, I will explore the following directions in the near future.

End-to-end elastic search. Bringing together everything I have developed towards elastic modelling,

representations and ANNS will result in a truly elastic end-to-end learned search system that maintains

accuracy for head tasks at fraction of the cost while being able to spend lot more resources to cater the rare

tail queries to not leave any data or user behind.

Indexing the world. Rethinking search through end-to-end representation learning and compression opens

up a new and on-the-fly way to index the entire world, not just the web. Imagine a robot that is moving

around and perceiving its surroundings, at the moment it can rarely remember everything it saw, heard or felt.

Enabling efficient representation that doubles as index of the perceived states would help any embodied or

intelligent agent make a more informed decision like what a human or even a crow would. This also helps in

improving privacy by enabling on-device indexing and search without compromising on accuracy for smart

devices [117]. Beyond perception, this representation learning paradigm assists in any setup that requires

accurate and fast search on all the candidates like in drug discovery [49] or protein structure generation [243].

I wish to expand on potential applications of efficient large-scale search and storage across natural sciences

for a more grounded use of generative foundation models.

118

Contextual foundation models. Hallucinations are the Achilles’ heel of modern generative models,

especially for tail tasks. While post-hoc retrieval augmentation [159, 208] can fix some of the issues and

make the generations more grounded and diverse, I look forward to building contextual foundation models

that are explicitly designed and optimized to leverage retrieval of relevant contextual data and external

memory banks as core components in their inference [25].

Continually learning intelligent systems. While human learning is never-ending, the machine equivalent,

continual learning has hit a road block owing to the issues in evaluation [251]. Loosely drawing parallels to

human brain or to a great extent emulating the modern-day computer architecture, elastic models can act

as hierarchical information packing and learning entities. I would like to revisit continual learning, through

the lens of elastic and contextual modeling, in real-world to capture trends across temporal scales while

discovering new things along the way [252] to eventually build a world model alongside fast local models

across time-scales [131].

In sum, my research focused on designing fundamental ML algorithms with strong empirical performance

and real-world deployability geared towards enabling efficient, elastic and contextual – adaptive – intelligence

that can bring the systems ever so close to the efficiency of the human brain [185].

119

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,

et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on

Operating Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

[2] M. AI. 64 bytes per embedding, yee-haw. 2024. URL https://www.mixedbread.ai/blog/

binary-mrl.

[3] N. AI. Unboxing nomic embed v1.5: Resizable production embeddings with matryoshka representation

learning. 2024. URL https://blog.nomic.ai/posts/nomic-embed-matryoshka.

[4] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding for image classification. IEEE

transactions on pattern analysis and machine intelligence, 38(7):1425–1438, 2015.

[5] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-

grained image classification. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 2927–2936, 2015.

[6] K. Alizadeh, A. Farhadi, and M. Rastegari. Butterfly transform: An efficient fft based neural architec-

ture design. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2020.

[7] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach for

margin classifiers. Journal of machine learning research, 1(Dec):113–141, 2000.

[8] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. Human activity recognition on

smartphones using a multiclass hardware-friendly support vector machine. In International Workshop

121

https://www.mixedbread.ai/blog/binary-mrl
https://www.mixedbread.ai/blog/binary-mrl
https://blog.nomic.ai/posts/nomic-embed-matryoshka

on Ambient Assisted Living, pages 216–223. Springer, 2012. URL https://archive.ics.uci.

edu/ml/datasets/human+activity+recognition+using+smartphones.

[9] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa, P. Bailey,

Z. Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

[10] M. Ashby, C. Baaij, P. Baldwin, M. Bastiaan, O. Bunting, A. Cairncross, C. Chalmers, L. Corrigan,

S. Davis, N. van Doorn, et al. Exploiting unstructured sparsity on next-generation datacenter hardware.

[11] M. Aumüller, E. Bernhardsson, and A. Faithfull. Ann-benchmarks: A benchmarking tool for approxi-

mate nearest neighbor algorithms. Information Systems, 87:101374, 2020.

[12] K. Azarian, Y. Bhalgat, J. Lee, and T. Blankevoort. Learned threshold pruning. arXiv preprint

arXiv:2003.00075, 2020.

[13] M. Á. Bautista Martín et al. Learning error-correcting representations for multi-class problems. PhD

thesis, Universitat de Barcelona, 2016.

[14] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM journal on imaging sciences, 2(1):183–202, 2009.

[15] G. Bellec, D. Kappel, W. Maass, and R. Legenstein. Deep rewiring: Training very sparse deep

networks. In International Conference on Learning Representations, 2018.

[16] S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks. Advances in

Neural Information Processing Systems, 23, 2010.

[17] Y. Bengio. Deep learning of representations for unsupervised and transfer learning. In Proceedings of

ICML workshop on unsupervised and transfer learning, pages 17–36. JMLR Workshop and Conference

Proceedings, 2012.

[18] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[19] J. L. Bentley. K-d trees for semidynamic point sets. In Proceedings of the sixth annual symposium on

Computational geometry, pages 187–197, 1990.

122

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

[20] E. Bernhardsson. Annoy: Approximate Nearest Neighbors in C++/Python, 2018. URL https:

//pypi.org/project/annoy/. Python package version 1.13.0.

[21] L. Beyer, P. Izmailov, A. Kolesnikov, M. Caron, S. Kornblith, X. Zhai, M. Minderer, M. Tschannen,

I. Alabdulmohsin, and F. Pavetic. Flexivit: One model for all patch sizes. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14496–14506, 2023.

[22] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proceedings of the

23rd international conference on Machine learning, pages 97–104, 2006.

[23] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for extreme multi-label

classification. In NIPS, volume 29, pages 730–738, 2015.

[24] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg,

A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models. arXiv preprint

arXiv:2108.07258, 2021.

[25] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. B. Van Den Driessche,

J.-B. Lespiau, B. Damoc, A. Clark, et al. Improving language models by retrieving from trillions of

tokens. In International conference on machine learning. PMLR, 2022.

[26] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Computer networks

and ISDN systems, 30(1-7):107–117, 1998.

[27] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information

processing systems, 33:1877–1901, 2020.

[28] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 535–541, 2006.

[29] D. Cai. A revisit of hashing algorithms for approximate nearest neighbor search. IEEE Transactions

on Knowledge and Data Engineering, 33(6):2337–2348, 2021. doi: 10.1109/TKDE.2019.2953897.

123

https://pypi.org/project/annoy/
https://pypi.org/project/annoy/

[30] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all: Train one network and specialize it for

efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

[31] H. Cai, C. Gan, J. Lin, and S. Han. Network augmentation for tiny deep learning. arXiv preprint

arXiv:2110.08890, 2021.

[32] R. Cai, S. Muralidharan, G. Heinrich, H. Yin, Z. Wang, J. Kautz, and P. Molchanov. Flextron: Many-

in-one flexible large language model. In International Conference on Machine Learning. PMLR,

2024.

[33] E. Candes, T. Tao, et al. The dantzig selector: Statistical estimation when p is much larger than n. The

annals of Statistics, 35(6):2313–2351, 2007.

[34] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep learning to hash by continuation. In

Proceedings of the IEEE international conference on computer vision, pages 5608–5617, 2017.

[35] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep learning to hash by continuation, 2017. URL

https://github.com/thuml/HashNet.

[36] M. A. Carreira-Perpinán and R. Raziperchikolaei. Hashing with binary autoencoders. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 557–566, 2015.

[37] W.-C. Chang, F. X. Yu, Y.-W. Chang, Y. Yang, and S. Kumar. Pre-training tasks for embedding-based

large-scale retrieval. arXiv preprint arXiv:2002.03932, 2020.

[38] W.-C. Chang, D. Jiang, H.-F. Yu, C. H. Teo, J. Zhang, K. Zhong, K. Kolluri, Q. Hu, N. Shandilya,

V. Ievgrafov, et al. Extreme multi-label learning for semantic matching in product search. In

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages

2643–2651, 2021.

[39] A. Chavan, Z. Shen, Z. Liu, Z. Liu, K.-T. Cheng, and E. P. Xing. Vision transformer slimming: Multi-

dimension searching in continuous optimization space. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 4931–4941, 2022.

124

https://github.com/thuml/HashNet

[40] C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and J. Jumper. Accelerating large language

model decoding with speculative sampling. arXiv preprint arXiv:2302.01318, 2023.

[41] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of

visual representations. In International conference on machine learning, pages 1597–1607. PMLR,

2020.

[42] T. Chen, L. Li, and Y. Sun. Differentiable product quantization for end-to-end embedding compression.

In International Conference on Machine Learning, pages 1617–1626. PMLR, 2020.

[43] W. Chen, Y. Liu, W. Wang, E. M. Bakker, T. Georgiou, P. Fieguth, L. Liu, and M. S. Lew. Deep learning

for instance retrieval: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2022.

[44] A. Choromanska, K. Choromanski, M. Bojarski, T. Jebara, S. Kumar, and Y. LeCun. Binary embed-

dings with structured hashed projections. In International Conference on Machine Learning, pages

344–353. PMLR, 2016.

[45] M. Cissé, N. Usunier, T. Artieres, and P. Gallinari. Robust bloom filters for large multilabel classifica-

tion tasks. In Advances in Neural Information Processing Systems 26, pages 1851–1859, 2013.

[46] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of the tenth

annual symposium on Computational geometry, pages 160–164, 1994.

[47] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector

machines. Journal of machine learning research, 2(Dec):265–292, 2001.

[48] K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain, S. Agarwal, and M. Varma.

Deepxml: A deep extreme multi-label learning framework applied to short text documents. In

Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pages 31–39,

2021.

[49] S. Dara, S. Dhamercherla, S. S. Jadav, C. M. Babu, and M. J. Ahsan. Machine learning in drug

discovery: a review. Artificial Intelligence Review, 55(3):1947–1999, 2022.

125

[50] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on

p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geometry,

pages 253–262, 2004.

[51] J. Dean. Challenges in building large-scale information retrieval systems. In Keynote of the 2nd ACM

International Conference on Web Search and Data Mining (WSDM), volume 10, 2009.

[52] M. Dehghani, A. Gritsenko, A. Arnab, M. Minderer, and Y. Tay. Scenic: A jax library for computer

vision research and beyond. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 21393–21398, 2022.

[53] M. Dehghani, J. Djolonga, B. Mustafa, P. Padlewski, J. Heek, J. Gilmer, A. P. Steiner, M. Caron,

R. Geirhos, I. Alabdulmohsin, et al. Scaling vision transformers to 22 billion parameters. In Interna-

tional Conference on Machine Learning, pages 7480–7512. PMLR, 2023.

[54] M. Deitke, R. Liu, M. Wallingford, H. Ngo, O. Michel, A. Kusupati, A. Fan, et al. Objaverse-XL:

A universe of 10m+ 3d objects. Advances in Neural Information Processing Systems, Datasets and

Benchmarks, 2023.

[55] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical

image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.

Ieee, 2009.

[56] J. Deng, A. C. Berg, and L. Fei-Fei. Hierarchical semantic indexing for large scale image retrieval. In

CVPR 2011, pages 785–792. IEEE, 2011.

[57] D. K. Dennis, Y. Gaurkar, S. Gopinath, C. Gupta, M. Jain, A. Kumar, A. Kusupati, C. Lovett, S. G.

Patil, and H. V. Simhadri. EdgeML: Machine Learning for resource-constrained edge devices. URL

https://github.com/Microsoft/EdgeML.

[58] K. Desai and J. Johnson. Virtex: Learning visual representations from textual annotations. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11162–

11173, 2021.

126

https://github.com/Microsoft/EdgeML

[59] T. Dettmers and L. Zettlemoyer. Sparse networks from scratch: Faster training without losing

performance. arXiv preprint arXiv:1907.04840, 2019.

[60] T. Dettmers and L. Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In

International Conference on Machine Learning, pages 7750–7774. PMLR, 2023.

[61] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transform-

ers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[62] Devvrit, S. Kudugunta, A. Kusupati, T. Dettmers, K. Chen, I. Dhillon, Y. Tsvetkov, H. Hajishirzi,

S. Kakade, A. Farhadi, P. Jain, et al. Matformer: Nested transformer for elastic inference. arXiv

preprint arXiv:2310.07707, 2023.

[63] Devvrit, S. Kudugunta, A. Kusupati, T. Dettmers, K. Chen, I. Dhillon, Y. Tsvetkov, H. Hannaneh,

S. Kakade, A. Farhadi, and P. Jain. Matformer: Nested transformer for elastic inference. arXiv preprint

arxiv:2310.07707, 2023.

[64] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes.

Journal of artificial intelligence research, 2:263–286, 1994.

[65] S. K. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised

visual concept learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3270–3277, 2014.

[66] D. L. Donoho. De-noising by soft-thresholding. IEEE transactions on information theory, 41(3):

613–627, 1995.

[67] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image

recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[68] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou, A. W. Yu, O. Firat,

B. Zoph, L. Fedus, M. Bosma, Z. Zhou, T. Wang, Y. E. Wang, K. Webster, M. Pellat, K. Robinson,

127

K. Meier-Hellstern, T. Duke, L. Dixon, K. Zhang, Q. V. Le, Y. Wu, Z. Chen, and C. Cui. Glam:

Efficient scaling of language models with mixture-of-experts, 2022.

[69] E. Elsen, M. Dukhan, T. Gale, and K. Simonyan. Fast sparse convnets. arXiv preprint

arXiv:1911.09723, 2019.

[70] J. J. Engelsma, A. K. Jain, and V. N. Boddeti. Hers: Homomorphically encrypted representation

search. IEEE Transactions on Biometrics, Behavior, and Identity Science, 4(3):349–360, 2022.

[71] L. Engstrom, A. Ilyas, H. Salman, S. Santurkar, and D. Tsipras. Robustness (python library), 2019.

URL https://github.com/MadryLab/robustness.

[72] S. Escalera, O. Pujol, and P. Radeva. Error-correcting ouput codes library. The Journal of Machine

Learning Research, 11:661–664, 2010.

[73] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen. Rigging the lottery: Making all tickets winners.

In International Conference on Machine Learning, 2020.

[74] H. Face. Introduction to matryoshka embedding models. 2024. URL https://huggingface.

co/blog/matryoshka.

[75] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes. In 2009 IEEE

Conference on Computer Vision and Pattern Recognition, pages 1778–1785. IEEE, 2009.

[76] V. Ferrari and A. Zisserman. Learning visual attributes. Advances in neural information processing

systems, 20:433–440, 2007.

[77] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In

International Conference on Learning Representations, 2019.

[78] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic

expected time. ACM Transactions on Mathematical Software (TOMS), 3(3):209–226, 1977.

[79] T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural networks. arXiv preprint

arXiv:1902.09574, 2019.

128

https://github.com/MadryLab/robustness
https://huggingface.co/blog/matryoshka
https://huggingface.co/blog/matryoshka

[80] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for approximate nearest neighbor

search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

2946–2953, 2013.

[81] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey of quantization

methods for efficient neural network inference. arXiv preprint arXiv:2103.13630, 2021.

[82] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. Journal of the

Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2):205–224, 1965.

[83] S. Gong, V. N. Boddeti, and A. K. Jain. On the intrinsic dimensionality of image representations.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

3987–3996, 2019.

[84] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach

to learning binary codes for large-scale image retrieval. IEEE transactions on pattern analysis and

machine intelligence, 35(12):2916–2929, 2012.

[85] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi. Morphnet: Fast & simple

resource-constrained structure learning of deep networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1586–1595, 2018.

[86] R. Gray. Vector quantization. IEEE Assp Magazine, 1(2):4–29, 1984.

[87] M. Grimaldi, L. Mocerino, A. Cipolletta, and A. Calimera. Dynamic convnets on tiny devices via

nested sparsity. IEEE Internet of Things Journal, 10(6):5073–5082, 2022.

[88] C. Guo, A. Mousavi, X. Wu, D. Holtmann-Rice, S. Kale, S. J. Reddi, and S. Kumar. Breaking the

glass ceiling for embedding-based classifiers for large output spaces. In NeurIPS, 2019.

[89] R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and S. Kumar. Accelerating large-scale

inference with anisotropic vector quantization. In International Conference on Machine Learning,

pages 3887–3896. PMLR, 2020.

129

[90] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient dnns. In Advances In Neural

Information Processing Systems, pages 1379–1387, 2016.

[91] N. Gupta, P. H. Chen, H.-F. Yu, C.-J. Hsieh, and I. S. Dhillon. End-to-end learning to index and search

in large output spaces. arXiv preprint arXiv:2210.08410, 2022.

[92] M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for un-

normalized statistical models. In Proceedings of the thirteenth international conference on artificial

intelligence and statistics, pages 297–304. JMLR Workshop and Conference Proceedings, 2010.

[93] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural

network. In Advances in neural information processing systems, pages 1135–1143, 2015.

[94] M. G. Harris and C. D. Giachritsis. Coarse-grained information dominates fine-grained information in

judgments of time-to-contact from retinal flow. Vision research, 40(6):601–611, 2000.

[95] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain surgeon. In

Advances in neural information processing systems, pages 164–171, 1993.

[96] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining, inference,

and prediction. Springer Science & Business Media, 2009.

[97] J. He, S. Kumar, and S.-F. Chang. On the difficulty of nearest neighbor search. In International

Conference on Machine Learning (ICML), 2012.

[98] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[99] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representa-

tion learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 9729–9738, 2020.

[100] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable vision

learners. arXiv preprint arXiv:2111.06377, 2021.

130

[101] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks. In

Proceedings of the IEEE International Conference on Computer Vision, pages 1389–1397, 2017.

[102] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for model compression and

acceleration on mobile devices. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 784–800, 2018.

[103] J. Hegdé. Time course of visual perception: coarse-to-fine processing and beyond. Progress in

neurobiology, 84(4):405–439, 2008.

[104] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution examples

in neural networks. arXiv preprint arXiv:1610.02136, 2016.

[105] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,

2016.

[106] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai, T. Zhu, S. Parajuli,

M. Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution generalization.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8340–8349,

2021.

[107] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15262–

15271, 2021.

[108] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A.

Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models. arXiv preprint

arXiv:2203.15556, 2022.

[109] H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of

educational psychology, 24(6):417, 1933.

[110] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu. Dynabert: Dynamic bert with adaptive

width and depth. Advances in Neural Information Processing Systems, 33:9782–9793, 2020.

131

[111] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.

Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

[112] J. Howard and S. Ruder. Universal language model fine-tuning for text classification. arXiv preprint

arXiv:1801.06146, 2018.

[113] D. Hsu, S. M. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing.

arXiv preprint arXiv:0902.1284, 2009.

[114] H. Hu, D. Dey, M. Hebert, and J. A. Bagnell. Learning anytime predictions in neural networks via

adaptive loss balancing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,

pages 3812–3821, 2019.

[115] Z. Huang and N. Wang. Data-driven sparse structure selection for deep neural networks. In Proceedings

of the European conference on computer vision (ECCV), pages 304–320, 2018.

[116] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In

Proceedings of the 30th International Conference on Neural Information Processing Systems, pages

4114–4122, 2016.

[117] Humane. Humane ai pin. Humane blog, 2023. URL https://hu.ma.ne/aipin.

[118] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimension-

ality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 604–613,

1998.

[119] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with low

rank expansions. In Proceedings of the British Machine Vision Conference. BMVA Press, 2014.

[120] D. Jain, K. Huynh Anh Nguyen, S. M. Goodman, R. Grossman-Kahn, H. Ngo, A. Kusupati, R. Du,

A. Olwal, L. Findlater, and J. E. Froehlich. Protosound: A personalized and scalable sound recognition

system for deaf and hard-of-hearing users. In Proceedings of the 2022 CHI Conference on Human

Factors in Computing Systems, 2022.

132

https://hu.ma.ne/aipin

[121] G. Jain, N. Hegde, A. Kusupati, A. Nagrani, S. Buch, P. Jain, A. Arnab, and S. Paul. Mixture of nested

experts: Adaptive processing of visual tokens. arXiv preprint, 2024.

[122] H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma. Slice: Scalable linear extreme classifiers

trained on 100 million labels for related searches. In Proceedings of the Twelfth ACM International

Conference on Web Search and Data Mining, pages 528–536, 2019.

[123] P. Jain, A. Tewari, and P. Kar. On iterative hard thresholding methods for high-dimensional m-

estimation. In Advances in Neural Information Processing Systems, pages 685–693, 2014.

[124] A. Jaiswal, Z. Gan, X. Du, B. Zhang, Z. Wang, and Y. Yang. Compressing llms: The truth is rarely

pure and never simple, 2023.

[125] S. Jayaram Subramanya, F. Devvrit, H. V. Simhadri, R. Krishnawamy, and R. Kadekodi. Diskann:

Fast accurate billion-point nearest neighbor search on a single node. Advances in Neural Information

Processing Systems, 32, 2019.

[126] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE

transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

[127] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li, and T. Duerig. Scaling

up visual and vision-language representation learning with noisy text supervision. In International

Conference on Machine Learning, pages 4904–4916. PMLR, 2021.

[128] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs. IEEE Transactions on

Big Data, 7(3):535–547, 2019.

[129] W. B. Johnson. Extensions of lipschitz mappings into a hilbert space. Contemp. Math., 26:189–206,

1984.

[130] I. T. Jolliffe and J. Cadima. Principal component analysis: a review and recent developments.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

374(2065):20150202, 2016.

[131] D. Kahneman. Thinking, fast and slow. macmillan, 2011.

133

[132] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,

and D. Amodei. Scaling laws for neural language models. arXiv, 2020.

[133] V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. Dense passage

retrieval for open-domain question answering. arXiv preprint arXiv:2004.04906, 2020.

[134] T. C. Kaz Sato. Vertex ai matching engine. Microsoft AI Blog, 2021. URL

https://cloud.google.com/blog/topics/developers-practitioners/find-

anything-blazingly-fast-googles-vector-search-technology.

[135] S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet models transfer better? In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition, pages 2661–2671, 2019.

[136] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures. In

Proceedings of the 2018 international conference on management of data, pages 489–504, 2018.

[137] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. Advances in neural information processing systems, 25, 2012.

[138] S. Kudugunta, Y. Huang, A. Bapna, M. Krikun, D. Lepikhin, M.-T. Luong, and O. Firat. Beyond

distillation: Task-level mixture-of-experts for efficient inference. arXiv preprint arXiv:2110.03742,

2021.

[139] S. Kudugunta, I. Caswell, B. Zhang, X. Garcia, C. A. Choquette-Choo, K. Lee, D. Xin, A. Kusupati,

R. Stella, A. Bapna, et al. MADLAD-400: A multilingual and document-level large audited dataset.

Advances in Neural Information Processing Systems, Datasets and Benchmarks, 2023.

[140] B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings. In NIPS, volume 22,

pages 1042–1050. Citeseer, 2009.

[141] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In 2009

IEEE 12th international conference on computer vision, pages 2130–2137. IEEE, 2009.

[142] B. Kulis, P. Jain, and K. Grauman. Fast similarity search for learned metrics. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 31(12):2143–2157, 2009.

134

https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology
https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology

[143] R. Kumar, A. Mittal, N. Gupta, A. Kusupati, I. Dhillon, and P. Jain. EHI: End-to-end learning of

hierarchical index for efficient dense retrieval. arXiv:2310.08891, 2023.

[144] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma. Fastgrnn: A fast, accurate, stable

and tiny kilobyte sized gated recurrent neural network. Advances in Neural Information Processing

Systems, 31, 2018.

[145] A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain, S. Kakade, and A. Farhadi. Soft

threshold weight reparameterization for learnable sparsity. In International Conference on Machine

Learning, pages 5544–5555. PMLR, 2020.

[146] A. Kusupati, M. Wallingford, V. Ramanujan, R. Somani, J. S. Park, K. Pillutla, P. Jain, S. Kakade, and

A. Farhadi. Llc: Accurate, multi-purpose learnt low-dimensional binary codes. Advances in Neural

Information Processing Systems, 34, 2021.

[147] A. Kusupati, G. Bhatt, A. Rege, M. Wallingford, A. Sinha, V. Ramanujan, W. Howard-Snyder, K. Chen,

S. Kakade, P. Jain, et al. Matryoshka representation learning. Advances in Neural Information

Processing Systems, 35:30233–30249, 2022.

[148] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, I. Polosukhin,

J. Devlin, K. Lee, et al. Natural questions: a benchmark for question answering research. Transactions

of the Association for Computational Linguistics, 7:453–466, 2019.

[149] F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush. Block pruning for faster transformers. arXiv

preprint arXiv:2109.04838, 2021.

[150] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-

class attribute transfer. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages

951–958. IEEE, 2009.

[151] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual

object categorization. IEEE transactions on pattern analysis and machine intelligence, 36(3):453–465,

2013.

135

[152] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in neural information

processing systems, pages 598–605, 1990.

[153] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[154] J. Lee, Z. Dai, X. Ren, B. Chen, D. Cer, J. R. Cole, K. Hui, M. Boratko, R. Kapadia, W. Ding,

et al. Gecko: Versatile text embeddings distilled from large language models. arXiv preprint

arXiv:2403.20327, 2024.

[155] N. Lee, T. Ajanthan, and P. Torr. SNIP: Single-shot network pruning based on connection sensitivity.

In International Conference on Learning Representations, 2019.

[156] Y. Lee. Differentiable sparsification for deep neural networks. arXiv preprint arXiv:1910.03201, 2019.

[157] Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative decoding.

arXiv, 2023.

[158] D. A. Levin and Y. Peres. Markov chains and mixing times, volume 107. American Mathematical

Soc., 2017.

[159] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, et al. Retrieval-

augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing

Systems, 2020.

[160] C. Li, H. Farkhoor, R. Liu, and J. Yosinski. Measuring the intrinsic dimension of objective landscapes.

arXiv preprint arXiv:1804.08838, 2018.

[161] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets. In

International Conference on Learning Representations, 2017.

[162] M. Li, S. Gururangan, T. Dettmers, M. Lewis, T. Althoff, N. A. Smith, and L. Zettlemoyer. Branch-train-

merge: Embarrassingly parallel training of expert language models. arXiv preprint arXiv:2208.03306,

2022.

136

[163] W. Li, Y. Zhang, Y. Sun, W. Wang, W. Zhang, and X. Lin. Approximate nearest neighbor search on

high dimensional data—experiments, analyses, and improvement. IEEE Transactions on Knowledge

and Data Engineering, 2020.

[164] T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and M. Jaggi. Dynamic model pruning with feedback. In

International Conference on Learning Representations, 2020.

[165] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEE Transactions on

communications, 28(1):84–95, 1980.

[166] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. Sparse convolutional neural networks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 806–814,

2015.

[167] H. Liu, R. Wang, S. Shan, and X. Chen. Deep supervised hashing for fast image retrieval. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2064–2072,

2016.

[168] J. Liu, Z. Xu, R. Shi, R. C. C. Cheung, and H. K. So. Dynamic sparse training: Find efficient

sparse network from scratch with trainable masked layers. In International Conference on Learning

Representations, 2020.

[169] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer. Generating wikipedia

by summarizing long sequences. arXiv preprint arXiv:1801.10198, 2018.

[170] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network pruning. In

International Conference on Learning Representations, 2019.

[171] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

11976–11986, 2022.

[172] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137,

1982.

137

[173] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through l0 regularization.

In International Conference on Learning Representations, 2018.

[174] Z. Lu, V. Sindhwani, and T. N. Sainath. Learning compact recurrent neural networks. In 2016 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5960–5964.

IEEE, 2016.

[175] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network

compression. In Proceedings of the IEEE international conference on computer vision, pages 5058–

5066, 2017.

[176] X. Luo, C. Chen, H. Zhong, H. Zhang, M. Deng, J. Huang, and X. Hua. A survey on deep hashing

methods. arXiv preprint arXiv:2003.03369, 2020.

[177] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. Approximate nearest neighbor algorithm

based on navigable small world graphs. Information Systems, 45:61–68, 2014.

[178] Y. A. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using

hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis & Machine

Intelligence, 42(04):824–836, 2020.

[179] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using

hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine

intelligence, 42(4):824–836, 2018.

[180] K. Mardia, J. Kent, and J. Bibby. Multivariate analysis. Probability and Mathematical Statistics, 1979.

[181] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-encoders for hier-

archical feature extraction. In International conference on artificial neural networks, pages 52–59.

Springer, 2011.

[182] P. Mitra, C. Murthy, and S. K. Pal. Unsupervised feature selection using feature similarity. IEEE

transactions on pattern analysis and machine intelligence, 24(3):301–312, 2002.

138

[183] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and A. Liotta. Scalable training

of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature

communications, 9(1):2383, 2018.

[184] D. Molchanov, A. Ashukha, and D. Vetrov. Variational dropout sparsifies deep neural networks. In

Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2498–2507.

JMLR. org, 2017.

[185] H. Moravec. When will computer hardware match the human brain. Journal of evolution and

technology, 1998.

[186] H. Mostafa and X. Wang. Parameter efficient training of deep convolutional neural networks by

dynamic sparse reparameterization. In International Conference on Machine Learning, pages 4646–

4655, 2019.

[187] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an overview. Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

[188] V. Nanda, T. Speicher, J. P. Dickerson, S. Feizi, K. P. Gummadi, and A. Weller. Diffused redundancy

in pre-trained representations. arXiv preprint arXiv:2306.00183, 2023.

[189] S. Narang, E. Elsen, G. Diamos, and S. Sengupta. Exploring sparsity in recurrent neural networks. In

International Conference on Learning Representations, 2019.

[190] P. Nayak. Understanding searches better than ever before. Google AI Blog, 2019. URL https:

//blog.google/products/search/search-language-understanding-bert/.

[191] A. Neelakantan, T. Xu, R. Puri, A. Radford, J. M. Han, J. Tworek, Q. Yuan, N. Tezak, J. W. Kim, C. Hal-

lacy, et al. Text and code embeddings by contrastive pre-training. arXiv preprint arXiv:2201.10005,

2022.

[192] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov. Hamming distance metric learning. In Advances in

neural information processing systems, pages 1061–1069, 2012.

139

https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/

[193] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. S. Corrado, and J. Dean.

Zero-shot learning by convex combination of semantic embeddings. arXiv preprint arXiv:1312.5650,

2013.

[194] OpenAI. New embedding models and api updates. 2024. URL https://openai.com/index/

new-embedding-models-and-api-updates/.

[195] R. OpenAI. Gpt-4 technical report. arXiv, pages 2303–08774, 2023.

[196] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Advances in

neural information processing systems, 32, 2019.

[197] S. G. Patil, D. K. Dennis, C. Pabbaraju, N. Shaheer, H. V. Simhadri, V. Seshadri, M. Varma, and P. Jain.

Gesturepod: Enabling on-device gesture-based interaction for white cane users. In Proceedings of the

32nd Annual ACM Symposium on User Interface Software and Technology, pages 403–415, 2019.

[198] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep

contextualized word representations. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long Papers), pages 2227–2237, New Orleans, Louisiana, June 2018. Association for Computational

Linguistics. doi: 10.18653/v1/N18-1202. URL https://aclanthology.org/N18-1202.

[199] Pinterest. Linksage: Gnn-based pinterest off-site content understanding. 2024. URL

https://medium.com/pinterest-engineering/linksage-gnn-based-

pinterest-off-site-content-understanding-fca14b0d1141.

[200] Y. Prabhu, A. Kusupati, N. Gupta, and M. Varma. Extreme regression for dynamic search advertising.

In Proceedings of the 13th International Conference on Web Search and Data Mining, pages 456–464,

2020.

[201] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding by

generative pre-training. OpenAI Blog, 2018. URL https://openai.com/blog/language-

unsupervised/.

140

https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://aclanthology.org/N18-1202
https://medium.com/pinterest-engineering/linksage-gnn-based-pinterest-off-site-content-understanding-fca14b0d1141
https://medium.com/pinterest-engineering/linksage-gnn-based-pinterest-off-site-content-understanding-fca14b0d1141
https://openai.com/blog/language-unsupervised/
https://openai.com/blog/language-unsupervised/

[202] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,

J. Clark, et al. Learning transferable visual models from natural language supervision. In International

Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

[203] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever. Robust speech recognition

via large-scale weak supervision. In International Conference on Machine Learning, pages 28492–

28518. PMLR, 2023.

[204] V. Ramanujan, P. K. A. Vasu, A. Farhadi, O. Tuzel, and H. Pouransari. Forward compatible training

for representation learning. arXiv preprint arXiv:2112.02805, 2021.

[205] M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discovery via predictable discriminative binary

codes. In European Conference on Computer Vision, pages 876–889. Springer, 2012.

[206] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary

convolutional neural networks. In European conference on computer vision, pages 525–542. Springer,

2016.

[207] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do imagenet classifiers generalize to imagenet? In

International Conference on Machine Learning, pages 5389–5400. PMLR, 2019.

[208] A. Rege and A. Kusupati. FReAD: Faithful retrieval augmented diffusion models. Work in progress,

2023.

[209] A. Rege, A. Kusupati, A. Fan, Q. Cao, S. Kakade, P. Jain, A. Farhadi, et al. Adanns: A framework for

adaptive semantic search. Advances in Neural Information Processing Systems, 36, 2023.

[210] A. Renda, J. Frankle, and M. Carbin. Comparing fine-tuning and rewinding in neural network pruning.

In International Conference on Learning Representations, 2020.

[211] O. Rippel, M. Gelbart, and R. Adams. Learning ordered representations with nested dropout. In

International Conference on Machine Learning, pages 1746–1754. PMLR, 2014.

[212] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

141

[213] D. Roy, S. Srivastava, A. Kusupati, P. Jain, M. Varma, and A. Arora. One size does not fit all: Multi-

scale, cascaded rnns for radar classification. In Proceedings of the 6th ACM International Conference

on Systems for Energy-Efficient Buildings, Cities, and Transportation, pages 1–10, 2019.

[214] S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf. Transfer learning in natural language process-

ing. In Proceedings of the 2019 conference of the North American chapter of the association for

computational linguistics: Tutorials, pages 15–18, 2019.

[215] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015.

[216] R. Salakhutdinov and G. Hinton. Learning a nonlinear embedding by preserving class neighbourhood

structure. In Artificial Intelligence and Statistics, pages 412–419. PMLR, 2007.

[217] R. Salakhutdinov and G. Hinton. Semantic hashing. International Journal of Approximate Reasoning,

50(7):969–978, 2009.

[218] M. Salehi, S. Mehta, A. Kusupati, A. Farhadi, and H. Hajishirzi. Sharcs: Efficient transformers through

routing with dynamic width sub-networks. Findings of Empirical Methods in Natural Language

Processing, 2023.

[219] J. S. Sánchez, F. Pla, and F. J. Ferri. On the use of neighbourhood-based non-parametric classifiers.

Pattern Recognition Letters, 18(11-13):1179–1186, 1997.

[220] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert: smaller, faster,

cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[221] P. Savarese, H. Silva, and M. Maire. Winning the lottery with continuous sparsification. arXiv preprint

arXiv:1912.04427, 2019.

[222] T. Schuster, A. Fisch, J. Gupta, M. Dehghani, D. Bahri, V. Tran, Y. Tay, and D. Metzler. Confident

adaptive language modeling. Advances in Neural Information Processing Systems, 35:17456–17472,

2022.

142

[223] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni. Green AI. arXiv preprint arXiv:1907.10597,

2019.

[224] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual expla-

nations from deep networks via gradient-based localization. In Proceedings of the IEEE international

conference on computer vision, pages 618–626, 2017.

[225] N. Shazeer and M. Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In

International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[226] E. Shen, A. Fan, S. Pratt, J. S. Park, M. Wallingford, S. Kakade, A. Holtzman, R. Krishna, A. Farhadi,

and A. Kusupati. Superposed decoding: Multiple generations from a single autoregressive inference

pass. arXiv preprint, 2024.

[227] F. Shen, Y. Xu, L. Liu, Y. Yang, Z. Huang, and H. T. Shen. Unsupervised deep hashing with similarity-

adaptive and discrete optimization. IEEE transactions on pattern analysis and machine intelligence,

40(12):3034–3044, 2018.

[228] H. V. Simhadri, G. Williams, M. Aumüller, M. Douze, A. Babenko, D. Baranchuk, Q. Chen, L. Hos-

seini, R. Krishnaswamy, G. Srinivasa, et al. Results of the neurips’21 challenge on billion-scale

approximate nearest neighbor search. arXiv preprint arXiv:2205.03763, 2022.

[229] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

[230] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In

Computer Vision, IEEE International Conference on, volume 3, pages 1470–1470. IEEE Computer

Society, 2003.

[231] D. R. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le. Primer: Searching for efficient

transformers for language modeling. arXiv preprint arXiv:2109.08668, 2021.

[232] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. The implicit bias of gradient descent

on separable data. The Journal of Machine Learning Research, 19(1):2822–2878, 2018.

143

[233] A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoreit, and L. Beyer. How to train your vit?

data, augmentation, and regularization in vision transformers. arXiv preprint arXiv:2106.10270, 2021.

[234] S. Su, C. Zhang, K. Han, and Y. Tian. Greedy hash: Towards fast optimization for accurate hash

coding in cnn. In Proceedings of the 32nd International Conference on Neural Information Processing

Systems, pages 806–815, 2018.

[235] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data in deep

learning era. In Proceedings of the IEEE international conference on computer vision, pages 843–852,

2017.

[236] Supabase. Matryoshka embeddings: faster openai vector search using adaptive retrieval. 2024. URL

https://supabase.com/blog/matryoshka-embeddings.

[237] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In

International conference on machine learning, pages 6105–6114. PMLR, 2019.

[238] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos, L. Baker,

Y. Du, et al. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239,

2022.

[239] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,

E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint

arXiv:2302.13971, 2023.

[240] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhar-

gava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint

arXiv:2307.09288, 2023.

[241] M. Valipour, M. Rezagholizadeh, H. Rajabzadeh, M. Tahaei, B. Chen, and A. Ghodsi. Sortednet, a

place for every network and every network in its place: Towards a generalized solution for training

many-in-one neural networks. arXiv preprint arXiv:2309.00255, 2023.

144

https://supabase.com/blog/matryoshka-embeddings

[242] L. Van Der Maaten, E. Postma, J. Van den Herik, et al. Dimensionality reduction: a comparative. J

Mach Learn Res, 10(66-71):13, 2009.

[243] M. van Kempen, S. S. Kim, C. Tumescheit, M. Mirdita, C. L. Gilchrist, J. Söding, and M. Steinegger.

Foldseek: fast and accurate protein structure search. Biorxiv, pages 2022–02, 2022.

[244] M. Varma. Extreme classification. Communications of the ACM, 62(11):44–45, 2019.

[245] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.

Attention is all you need. In Advances in neural information processing systems, pages 5998–6008,

2017.

[246] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In

Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition.

CVPR 2001, volume 1, pages I–I. Ieee, 2001.

[247] A. Visheratin. Nllb-siglip-mrl. 2024. URL https://huggingface.co/visheratin/nllb-

siglip-mrl-large.

[248] C. Waldburger. As search needs evolve, microsoft makes ai tools for better search available to

researchers and developers. Microsoft AI Blog, 2019. URL https://blogs.microsoft.com/

ai/bing-vector-search/.

[249] M. Wallingford, A. Kusupati, K. Alizadeh-Vahid, A. Walsman, A. Kembhavi, and A. Farhadi. Are we

overfitting to experimental setups in recognition? arXiv preprint arXiv:2007.02519, 2020.

[250] M. Wallingford, H. Li, A. Achille, A. Ravichandran, C. Fowlkes, R. Bhotika, and S. Soatto. Task

adaptive parameter sharing for multi-task learning. arXiv preprint arXiv:2203.16708, 2022.

[251] M. Wallingford, A. Kusupati, K. Alizadeh-Vahid, A. Walsman, A. Kembhavi, and A. Farhadi. FLUID:

A unified evaluation framework for flexible sequential data. Transactions on Machine Learning

Research, 2023.

[252] M. Wallingford, A. Kusupati, A. Fang, V. Ramanujan, A. Kembhavi, R. Mottaghi, and A. Farhadi.

Neural radiance field codebooks. International Conference on Learning Representations, 2023.

145

https://huggingface.co/visheratin/nllb-siglip-mrl-large
https://huggingface.co/visheratin/nllb-siglip-mrl-large
https://blogs.microsoft.com/ai/bing-vector-search/
https://blogs.microsoft.com/ai/bing-vector-search/

[253] M. Wallingford, A. Bhattad, A. Kusupati, V. Ramanujan, M. Deitke, A. Kembhavi, R. Mottaghi, W.-C.

Ma, and A. Farhadi. From an image to a scene: Learning to imagine the world from a million 360

videos. arXiv preprint, 2024.

[254] H. Wang, S. Ge, Z. Lipton, and E. P. Xing. Learning robust global representations by penalizing local

predictive power. In Advances in Neural Information Processing Systems, pages 10506–10518, 2019.

[255] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han. Hat: Hardware-aware transformers for

efficient natural language processing. arXiv preprint arXiv:2005.14187, 2020.

[256] J. Wang, W. Liu, S. Kumar, and S.-F. Chang. Learning to hash for indexing big data—a survey.

Proceedings of the IEEE, 104(1):34–57, 2015.

[257] M. Wang, X. Xu, Q. Yue, and Y. Wang. A comprehensive survey and experimental comparison of

graph-based approximate nearest neighbor search. Proceedings of the VLDB Endowment, 14(11):

1964–1978, 2021.

[258] X. Wang, D. Kondratyuk, K. M. Kitani, Y. Movshovitz-Attias, and E. Eban. Multiple networks

are more efficient than one: Fast and accurate models via ensembles and cascades. arXiv preprint

arXiv:2012.01988, 2020.

[259] P. Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint

arXiv:1804.03209, 2018. URL http://download.tensorflow.org/data/speech_

commands_v0.01.tar.gz.

[260] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search

methods in high-dimensional spaces. In VLDB, volume 98, pages 194–205, 1998.

[261] Y. Weiss, A. Torralba, R. Fergus, et al. Spectral hashing. In Advances in Neural Information Processing

Systems, 2008.

[262] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural networks.

In Advances in neural information processing systems, pages 2074–2082, 2016.

146

http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz

[263] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In

Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

[264] T. Weyand, A. Araujo, B. Cao, and J. Sim. Google landmarks dataset v2-a large-scale benchmark for

instance-level recognition and retrieval. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 2575–2584, 2020.

[265] I. H. Witten, I. H. Witten, A. Moffat, T. C. Bell, T. C. Bell, E. Fox, and T. C. Bell. Managing gigabytes:

compressing and indexing documents and images. Morgan Kaufmann, 1999.

[266] M. Wortsman, A. Farhadi, and M. Rastegari. Discovering neural wirings. In Advances In Neural

Information Processing Systems, pages 2680–2690, 2019.

[267] M. Wortsman, G. Ilharco, M. Li, J. W. Kim, H. Hajishirzi, A. Farhadi, H. Namkoong, and L. Schmidt.

Robust fine-tuning of zero-shot models. arXiv preprint arXiv:2109.01903, 2021.

[268] Z. Wu, Y. Xiong, S. Yu, and D. Lin. Unsupervised feature learning via non-parametric instance-level

discrimination. arXiv preprint arXiv:1805.01978, 2018.

[269] X. Xiao, Z. Wang, and S. Rajasekaran. Autoprune: Automatic network pruning by regularizing

auxiliary parameters. In Advances in Neural Information Processing Systems, pages 13681–13691,

2019.

[270] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks?

Advances in neural information processing systems, 27, 2014.

[271] H.-F. Yu, P. Jain, P. Kar, and I. Dhillon. Large-scale multi-label learning with missing labels. In

International conference on machine learning, pages 593–601. PMLR, 2014.

[272] H.-F. Yu, K. Zhong, J. Zhang, W.-C. Chang, and I. S. Dhillon. Pecos: Prediction for enormous and

correlated output spaces. Journal of Machine Learning Research, 23(98):1–32, 2022.

[273] J. Yu and T. Huang. Network slimming by slimmable networks: Towards one-shot architecture search

for channel numbers. arXiv preprint arXiv:1903.11728, 2019.

147

[274] J. Yu and T. S. Huang. Universally slimmable networks and improved training techniques. In

Proceedings of the IEEE/CVF international conference on computer vision, pages 1803–1811, 2019.

[275] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang. Slimmable neural networks. arXiv preprint

arXiv:1812.08928, 2018.

[276] X. Yuan, L. Ren, J. Lu, and J. Zhou. Relaxation-free deep hashing via policy gradient. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 134–150, 2018.

[277] R. Zellers, J. Lu, X. Lu, Y. Yu, Y. Zhao, M. Salehi, A. Kusupati, J. Hessel, A. Farhadi, and Y. Choi.

Merlot reserve: Neural script knowledge through vision and language and sound. arXiv preprint

arXiv:2201.02639, 2022.

[278] C. Zhang and Y. Ma. Ensemble machine learning: methods and applications. Springer, 2012.

[279] X. Zhang. A survey on deep hashing for image retrieval. arXiv preprint arXiv:2006.05627, 2020.

[280] Y. Zhang and J. Schneider. Multi-label output codes using canonical correlation analysis. In Proceed-

ings of the fourteenth international conference on artificial intelligence and statistics, pages 873–882.

JMLR Workshop and Conference Proceedings, 2011.

[281] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition

using places database. In Advances in Neural Information Processing Systems, 2014.

[282] M. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model

compression. arXiv preprint arXiv:1710.01878, 2017.

[283] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning

books and movies: Towards story-like visual explanations by watching movies and reading books. In

Proceedings of the IEEE international conference on computer vision, pages 19–27, 2015.

148

	Introduction
	Matryoshka Representation Learning
	Overview
	Introduction
	Related Work
	[height=12pt]MRL/TabsNFigs/images/doll.pdf Matryoshka Representation Learning
	Applications
	Representation Learning
	Classification
	Retrieval

	Further Analysis and Ablations
	Ablations

	Discussion and Conclusions

	AdANNS: A Framework for Adaptive Semantic Search
	Overview
	Introduction
	Related Work
	Problem Setup, Notation, and Preliminaries
	AdANNS – Adaptive ANNS
	AdANNS-IVF
	AdANNS-OPQ
	AdANNS for Composite Indices

	Further Analysis and Discussion
	Compute-aware Elastic Search During Inference
	Why MRs over RRs?
	Search for AdANNS Hyperparameters
	Limitations

	Conclusions

	MatFormer: Nested Transformer for Elastic Inference
	Overview
	Introduction
	Related Work
	MatFormer
	MatFormer Structure
	Training
	Mix'n'Match
	Deployment

	Experiments
	MatLM: MatFormer Language Models
	MatViT: MatFormer Vision Transformers

	Conclusions

	Soft Threshold Weight Reparameterization for Learnable Sparsity
	Overview
	Introduction
	Related Work
	Unstructured and Structured Sparsity
	Dense-to-sparse and Sparse-to-sparse Training
	Uniform and Non-uniform Sparsity
	Learnable Sparsity

	Method - STR
	Analysis

	Experiments
	Unstructured Sparsity in CNNs
	Structured Sparsity in RNNs

	Discussion and Drawbacks
	Conclusions

	LLC: Accurate, Multi-purpose Learnt Low-dimensional Binary Codes
	Overview
	Introduction
	Related Work
	Learning Low-dimensional Binary Codes
	The LLC Method
	Discovered Taxonomy and Visualizations

	Applications
	Efficient Multi-class Classification
	Efficient Retrieval
	Out-of-Distribution (OOD) Detection
	Ablation Studies

	Discussion and Conclusions

	Discussion, Conclusion and Future Work

