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Abstract

This paper introduces a new learning paradigm
called eXtreme Regression (XR) to accurately
predict the numerical degrees of relevance of an
extremely large number of labels to a data point
in contrast to the recently popular extreme clas-
sifiers which incorrectly assume strictly binary-
valued label relevances. Traditional regression
metrics are unsuitable for XR problems since they
could give extremely loose bounds for the label
ranking quality. Also, the existing regression al-
gorithms won’t efficiently scale to millions of
labels. This paper addresses these limitations
through: (1) new evaluation metrics for XR; (2)
a new algorithm called XReg which decomposes
XR into a hierarchy of much smaller regression
problems. This paper also introduces a (3) new
labelwise prediction algorithm in XReg useful
for recommendation tasks like Dynamic Search
Advertising (DSA). Experiments on benchmark
datasets demonstrated that XReg can outperform
the state-of-the-art extreme classifiers as well as
large-scale regressors and rankers by up to 50%
reduction in the new XR error metric, and up
to 2% and 2.4% improvements in terms of the
propensity-scored precision in extreme classifi-
cation and the click-through rate in DSA respec-
tively. Deployment of XReg on DSA in Bing re-
sulted in a relative gain of 27% in query coverage.
XReg Prabhu et al. (2020) was originally pub-
lished at WSDM 2020. XReg’s source code can
be downloaded from http://manikvarma.
org/code/XReg/download.html.

1. Introduction

Objective: This paper introduces a new learning paradigm
called eXtreme Regression (XR) which can provide elegant
solutions to many large-scale ranking and recommendation
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applications including Dynamic Search Advertising (DSA).
To effectively solve XR problems, this paper also devel-
ops new evaluation metrics and a new highly scalable and
accurate algorithm called XReg.

eXtreme Regression: The objective of eXtreme Regres-
sion is to learn to accurately predict the numerical degrees
of relevance of an extremely large number of labels with
respect to a data point. Many large-scale ranking and rec-
ommendation applications can naturally be reformulated
as XR problems. For example, the task of DSA can be
posed as the problems of predicting the search queries’ click
probabilities for an ad. This qualifies as XR problems since
the total number of queries can potentially be in millions.
The predicted relevance estimates could then be used to
recommend the most relevant labels to a data point which
is the desired end goal of recommendation systems. Alter-
natively, the recommendations can also be further refined
by filtering off less relevant ones or by re-ranking them to
improve their relevance, and the relevance estimates provide
principled ways of achieving these. To successfully solve
an XR problem, new algorithms which could train and pre-
dict efficiently over millions of labels as well as millions of
data points while also maintaining high prediction accuracy
are required. Furthermore, the definition of accuracy, or
equivalently regression error, needs to be redefined for XR
settings where both the relevant labels and the desired label
recommendations are extremely small.

DSA: DSA is a format of search advertising where the ads to
be shown against a search query, along with the associated
ad-copy, ad-title, bid-phrases etc., are algorithmically ob-
tained by leveraging the content from the ad landing pages.
This saves considerable efforts for advertisers, results in
faster deployment of new ad campaigns and enables more
accurate user targeting. The ads shown by DSA algorithms
need to be highly relevant and generate user clicks for the
given query in order to earn revenue for the search engine
and satisfy the users and advertisers. In addition, these algo-
rithms need to train and predict very efficiently in order to
scale to billions of ads and millions of search queries across
multiple markets and maintain milliseconds’ prediction la-
tencies. This paper solves DSA as an XR task of estimating
the click probabilities for the query, ad pairs by using the
new XReg algorithm.

eXtreme Regression metrics: This paper proposes new re-
gression metrics for XR which serve as good proxies for
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the ranking accuracy and for the qualities of the subsequent
label filtering and re-ranking steps. These metrics average
of the largest few regression errors which are usually caused
by highly underestimating or highly overestimating the rele-
vances of the most or the least relevant labels which in turn
degrade the ranking quality. The new XMAD @k metric
can give up to 69x tighter bounds over ranking regret than
MAD. These new metrics can guide the crucial steps in XR.

eXtreme Regressor algorithm: This paper also develops
a new eXtreme Regressor (XReg) algorithm which can ef-
ficiently regress on to millions of label relevance weights
in only logarithmic time. XReg hierarchically clusters the
labels into a balanced tree and learns approximate regres-
sors in each tree node which are common to all the labels
in the node. Due to high label sparsity, each data point only
participates in a logarithmic number of tree nodes which can
lead to a significant speed up during both training and pre-
diction by using appropriate algorithms. XReg essentially
extends the state-of-the-art Parabel extreme classifier to the
regression setting. XReg consistently outperforms extreme
classifiers, large-scale regressors and rankers in terms of
ranking accuracy. On a DSA dataset with 5SM ads & 1M
queries, XReg can train within just 20 hours using 1 core,
predict in just 3 ms per query and give up to 58% & 27%
lifts in revenue and query coverage when deployed online.

Labelwise inference: The standard prediction scenario in-
volves recommending the most relevant labels for a test
point, referred here as pointwise prediction, but applications
such as DSA and movie recommendation can more natu-
rally be posed in the reverse manner of predicting the most
relevant ads or movies (i.e. test points) for each query or
user (i.e. each label), referred here as labelwise prediction.
On these tasks, pointwise prediction might recommend a
small set of highly popular labels that are relevant to all test
points resulting in low label coverage.

Contributions: This paper: (a) introduces a new learning
paradigm called eXtreme Regression (XR) and reformulates
tagging, movie recommendation and DSA applications as
XR problems; (b) develops new evaluation metrics and a
highly scalable and accurate algorithm called XReg to effec-
tively tackle XR problems; and (c) demonstrates that XReg
can significantly improve revenue and query coverage on
Bing DSA when deployed in production.

Please refer to Prabhu et al. (2020) for a more comprehen-
sive motivation and related work.

2. Extreme Regression Metrics

Notation: Let an XR dataset comprise N data points
{(xi,y:)}}¥, where x; € RP is a D dimensional feature
vector and y; € [0, o) is a ground truth relevance weight
vector for point 7. The weight y;; measures the true degree
of relevance of label [ to point ¢, with higher values indi-

cating higher relevance. Similarly, let y; € [0, 00)* denote
the predicted relevance weight vector for point ¢. The func-
tion S(v, k) indicates the ordered index set of the k highest

scoring labels in a score vector v € [0, 00)%.

Extreme regression metrics: Let, e; be the vector of re-
gression errors where e;; = |§;; — yi1|. The new XR metrics,
eXtreme Mean Absolute Deviation at £ (XMAD@k) and
eXtreme Root Mean Square Error at £k (XRMSE@Kk) are
defined as follows:
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XRMSE@k‘(}A’i, Yi) =
leS(e;,k)

For ease of discussion, this paper mainly focusses on the
XMAD metric, although most of the observations and re-
sults also apply to XRMSE. XMAD @£ averages the k£ maxi-
mum regression errors but is minimized when all the L label
relevances are predicted exactly right. The following lemma
shows that XMAD serves as a good proxy for the ranking
error. This is based on an intuition that the ranking errors at
the top occur mainly due to either highly underestimating
or highly overestimating the relevances of the most or the
least relevant labels respectively leading to high regression
errors on such labels. Prabhu et al. (2020) further shows
that the bounds on ranking regret are much tighter when the
proposed extreme regression metrics are used along with
extension to create labelwise metrics.

3. XReg: eXtreme Regressor

This section describes XReg’s key components including the
label tree construction, the probabilistic regression model
and the pointwise and labelwise prediction algorithms using
the same model. XReg learns a small ensemble of up to 3
label trees quite similarly to Parabel (Prabhu et al., 2018).

3.1. A Probabilistic Regression Model

XReg is a regression method which takes a probabilistic
approach to estimating the label relevance weights. Firstly,
all the relevance weights are normalized to lie between 0
and 1 by dividing by its maximum value, thus allowing
them to be treated as probability values. Note that while
click-through rates in DSA are already valid probabilities,
the inverse propensities and the user rating could exceed 1.
Also, note that the predicted estimates can be easily scaled
back since no information is lost due to this normalization.

XReg treats the normalized relevance weights for each label
as the marginal probability of its relevance to a data point,
which is, in fact, the case in DSA. This allows XReg to min-
imize the KL-divergence between the true and the predicted
marginal probability for each label with respect to each data
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point. KL-divergence (Kullback & Leibler, 1951) measures
how close 2 distributions are and is minimized when the 2
are identical, thus justifying its use while regressing on to
probability values.

To reduce the complexity of naive 1-vs-All approach, XReg
leverages the previously trained label tree. XReg expresses
the marginal probability of a label as the probability that
a data point traverses the tree path starting from the root
to the label. Let the path from root to label [ consist of
nodes n;1, - - -,y where H is tree height, n; is the root
and n;y is the leaf node containing solely label [. Let z;,
denote the probability that a data point x visits the node
nyp, after it has already visited the parent 7, _1). Then the
true marginal probability y; that the label [ is relevant to x
is equivalent to y; = Hle z1p- Similar equality holds for
predicted marginal probability: g; = HhH:1 Zin. XReg then
learns to minimize an upper bound on the KL-divergence
between the two.

The unvisited node assumption formalizes the observation
that the children of an unvisited internal node will never
be traversed and that the labels in an unvisited leaf node
will never be visited by a data point (Prabhu et al., 2018).
Due to the above theorem, XReg can separately minimize
the KL-divergence over the true and predicted probabilities
that a data point takes a particular edge in the tree, and still
end up minimizing the KL-divergences over each of the
individual marginal label probabilities. The true probability
value of edge traversal z;;, is essentially the probability that
the data point visits any of the labels in the subtree rooted
at the node indexed [h. We instantiate it to be equal to the
largest marginal probability of any label in the subtree, by
assuming the worst-case scenario that labels in each subtree
are fully correlated, which promotes model robustness.

The KL-divergence minimization is mathematically equiva-
lent to training a logistic regressor for estimating z;;, values
for each tree edge where every data point is duplicated with
weights 2y, and 1 — 2y,

m1n||wn|| + — |I | Z{smzmlog(lJrexp( w, )+

1€,
(3)
Sin(1 — zipn) log(1 + exp(—&-wlxi))}
“4)

where n is used to index the node instead of (h, Z,, only
include those points which reach the node n. The problem
in (Eq. 3) is strongly convex and was optimized using the
modified CDDual algorithm available from Liblinear pack-
age (Fan et al., 2008). To summarize, each internal node in
XReg contains 2 1-vs-All regressors which give the proba-
bility that a data point traverses to each of its children, each
leaf node contains M 1-vs-All regressors which gives the
conditional probability of each label being relevant given
the data point reaches its leaf.

We make a mild assumption that each data point has at
most O(log L) positive labels is made which is often valid
on extreme learning datasets. As a result, each data point
traverses at most O(log? L) tree edges, which directly leads
to a huge reduction in training complexity thus resulting in
O(N Dlog? L) where D is the average number of non-zero
features per data point.

XReg supports both pointwise and labelwise inference de-
pending on the task at hand and more details can be found
in Prabhu et al. (2020).

4. Experiments

Please refer to Prabhu et al. (2020) for a detailed disus-
sion on datasets and baselines along with hyperparameters,
metrics and hardware.

Results on benchmark datasets: Table 1 compares
XReg’s performance to diverse baselines on datasets be-
longing to tagging, recommendation and DSA applications.
In terms of prediction accuracy, XReg consistently achieves
close to best performance in terms of WP@5, Tau@5 as
well as XMAD @5 metrics. In particular, XReg can be up
to 2.4%, 3.89% and 2x better than all baselines in WP @5,
Tau@5 and XMAD @5 respectively.

On most tagging datasets, XReg scores within 2% of the
state-of-the-art ProXML (Babbar & Scholkopf, 2018) in
terms of the popular PSP@5 metric but can be up to 1000x
faster during both training and prediction.

XReg consistently outperforms extreme classifiers like Para-
bel and DiISMEC (Babbar & Scholkopf, 2017) which train
only on binary labels. In particular, XReg can be up to 9%
and 45% better than Parabel over pointwise and labelwise
datasets in terms of WP@5. The larger gains on labelwise
datasets are due to pointwise prediction in Parabel which
can lead to low label coverage, especially on datasets like
MovieLens with only 8K test points but around 140K la-
bels. Owing to similar classifier architectures, XReg can be
highly efficient just like Parabel. XReg is at most 3.75x and
4.8x slower during training and prediction and has at most
2.15x the model size as Parabel.

Owing to their high scalability, both Parabel and XReg scale
to the largest DSA-1M dataset where none of the other
approaches scale. On this dataset, XReg has 50% smaller
XMAD @5 than Parabel.

XReg-t denotes the re-ranked XReg where the predicted
relevance estimates are combined with tail classifier scores
to improve ranking performance over more informative tail
labels. XReg-t consistently improves performance over
XReg since most XR datasets are dominated by tail labels.
XReg-t can be up to 5.66% and 5.58% better than XReg
in terms of PSP@5 and Tau@5. However, XReg-t often
increases XMAD @5 over XReg since tail classifiers are
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Table 1. XReg achieves the best or close to the best ranking and regression performance in both pointwise (“-p”) and labelwise “-1”)
prediction settings. Re-ranking with tail classifiers (XReg-t) further improves the performance. More results are in the full paper.

PSP-p@5 Tau-p@5 @s Iraining  Test time Model Method CTRp@5  Tau-p@5 v\ 1\ @5 Lraining  Testtime Model
Method %) @)~ XMADP@S e (hrs) fpoint (ms)  size (GB) etho (%) (%) PE> fime (hrs) /point (ms) size (GB)
BibTex SSA-130K
PfastreXML  59.75 53.68 0.3151 0.0050 0.2348 0.0246 PlastreXML ~ 27.79 23.77 0.0655 1.3765 5.2419 1.6258
Parabel 57.36 51.48 0.3372 0.0015 0.1945 0.0035 Parabel 3297 30.25 0.1430 0.2283 1.9098 0.3625
LEML 56.42 51.58 0.3520 00229  0.1737  0.0032 LEML 6.54 8.10 0.0654 8.3253  161.6891  1.1308
l-vs-allLS 6014 5421 0.3337 0.0007 0.1137 0.0023 RankSVM 13.06 14.03 27871 96026 130.0945  7.4834
RankSVM 59.12 52.58 0.7089 00015 00719  0.0023 DiSMEC 3275 29.16 0.1562 314358 61.0967  0.0802
DISMEC 5723 5147 03371 0.0004 00951 0.0012 XReg 3239 2827 0.0684 0.4570 74715 0.7871
ProXML 58.30 . _ N _ N XReg-t 32.81 28.73 0.1131 0.5049 1.7746 1.4156
XReg 58.61 5235 0.3158 0.0035 0.1642 0.0030 Ratine1@5 _ Tawl@5 Traini Testti
g au g raining est time Model
XReg-t 58.77 52.46 0.3386 0.0025 0.1256 0.0043 Method (%) @)  XMADA@S i (hrs)  fpoint (ms)  size (GB)
EURLex-4K ‘YahooMovie-8K
PfastreXML  45.17 48.85 0.1900 0.0887 1.3891 0.2265 PfastreXML 10.18 19.72 0.6286 0.0241 8.5074 0.0753
Parabel 48.29 50.75 0.4227 0.0245 1.1815 0.0258 Parabel 973 2822 0.6284 0.0299 0.9639 0.1307
LEML 32.30 37.24 0.2115 0.3592 4.4483 0.0281 LEML 2179 28.85 0.6408 0.0593 5.3650 0.0586
1-vs-all-LS 52.27 53.96 0.1744 0.1530 4.5378 0.1515 1-vs-all-LS 21.63 31.24 0.6269 0.0740 6.8841 1.6977
RankSVM 46.70 51.43 1.1967 0.1834 47635 0.1470 RankSVM 24.88 3328 1.0579 0.1282 5.1620 0.7172
DiSMEC 50.62 52.33 0.4308 0.0999 1.9489 0.0072 DiSMEC 24.53 32.75 0.6207 0.0337 3.4258 0.0376
ProXML 51.00 - - - - - XLR 4.66 10.72 0.6716 - 47724 0.0293
XReg 49.72 52.86 0.1849 0.0642 1.2899 0.0378 XReg 25.86 35.00 0.6248 0.0685 4.1965 0.2829
XReg-t 50.40 53.45 0.2132 0.0544 1.2074 0.0692 XReg-t 26.05 3533 0.6185 0.0615 3.6353 0.4500
Wikil0-31K MovieLens-138K
PfastreXML 1591 20.29 0.5705 0.3491 116855  0.5466 PfastreXML 7.25 22.84 0.9199 04514 19.8270  0.1837
Parabel 13.68 19.83 0.7085 0.3204 3.7275 0.1799 Parabel 351 37.80 0.9200 1.7790 1.6132 3.4322
LEML 13.05 20.06 0.5716 0.9546 54.9470 0.5275 LEML 43.19 64.78 0.8722 0.4186 91.4262 0.2535
I-vs-all-LS 21.89 2671 0.5459 24341 129.8342  16.9871 1-vs-all-LS 42.16 63.92 0.8832 25756 121.6169  16.1334
RankSVM 18.46 25.84 1.2236 4.9631 922684  10.8536 DiSMEC 4535 61.55 0.8857 15437 749537 1.0514
DiSMEC 15.61 2243 0.7140 2.1945 13.8993  0.0290 XLR 9.67 21.42 0.9134 4.579 68.347 0.0634
XReg 16.94 24,97 0.5716 0.6184 3.7649 0.3218 XReg 48.94 66.99 0.8741 2.6287 7.7996 3.6223
XReg-t 22.60 30.55 0.5506 0.6431 5.4910 0.9026 XReg-t 49.29 67.36 0.8285 2.7437 9.8279 4.8958
WikiLSHTC-325K Method CTRF;I@S Tau;/l@S XMAD-1@5 l’.l'ram;lng /Te§tlllme Mmé;la
PlasteXML  28.04 36.38 0.1437 71974 69045  13.3096 %) %) ime (hrs) _/point (ms) _size (GB)
Parabel 37.22 4171 0.2459 1.2195 2.2486 3.0885 DSA-130K
DiSMEC 39.50 - - - - - PfastreXML  28.18 34.75 0.0422 13765 52419 1.6258
ProXML 41.00 - - - - - Parabel 33.97 28.37 0.0891 0.2283 19098 03625
XReg 36.92 41.62 0.1411 45119 3.0312 35105 LEML 1036 770 0.0415 83253 2121707 1.1308
XReg-t 4033 4339 0.3140 3.8552 3.0896 4.1955 DiSMEC 34.06 27.96 0.1039 314358 554037  0.0802
Amazon-670K XLR 0.09 0.10 0.4816 55430 641134  0.0678
XReg 35.66 2851 0.0439 0.4570 7.4715 0.7871
PfastreXML  28.53 30.97 0.4019 33143 11.4931 9.8113 XRez-t 3632 28.45 0.0587 0.3669 8.4376 13512
Parabel 32.88 3132 0.4292 0.5815 2.3419 1.9297
DiSMEC 34.45 31.94 0.4275 373 1414 3.7500 DSA-IM
ProXML 35.10 - - ~ 1200 ~ 1000 - Parabel 37.95 30.93 0.1004 9.2800 2.5031 5.6774
XReg 3324 34.72 0.3869 1.4925 2.4633 3.4186 XReg 37.57 31.09 0.0563 20.7463 3.1792 11.0178
XReg-t 34.29 35.83 0.4473 1.1864 2.2242 4.5952 XReg-t 38.81 3141 0.0714 15.4201 3.4036 18.7434

Table 2. XReg significantly improves query coverage over the ex-
isting ensemble for DSA on Bing. Note: Cov: Query Coverage,
CY: Click Yield, I'Y: Impression Yield, BR: Bounce Rate

Method Relative Relative Relative Relative  Relative
Cov (%) CY (%) 1Y (%) CTR (%) BR (%)

Pointwise XReg - 105 105 100 100

Labelwise XReg 127 148 150 98 100

not regressors but are good generative classifiers which and
therefore increase regression errors. Since the tail classifiers
are extremely efficient to train and the re-ranking step is
only applied to a small number (100s) of labels with high
relevance estimates from XReg, XReg-t can be very efficient
with 1.1, 1.96 and 2.8 times the training time, prediction
time and model size as XReg in worst case.

Prabhu et al. (2020) further contains 1) Additional results for
WP@k, Tau@k where k=1,3, nDCG@5 and XRMSE@5
2) Extensive experimentation on filtering and re-ranking on
the prediction relevance weight estimates from XReg, 3)
Analysis of ranking errors and regression metrics can be
found in Prabhu et al. (2020) and 4) Further ablation studies

showing the effectiveness of XReg and the novel labelwise
inference algorithms.

DSA Results: Table 1 shows the offline evaluation on DSA-
130K and DSA-1IM while Table 2 showcases the results
of the live deployment of labelwise XReg in Bing DSA
pipeline. Even though few of the extreme classification
techniques could scale to DSA-130K, the live deployment
requires the techniques to scale to tens of millions of labels
(queries) and data points (ads). In the actual deployment
only PfastreXML, Parabel, and XReg were able to scale.

Table 2 compares XReg’s performance to the existing DSA
ensemble, consisting of BM25 information retrieval based
algorithm (Jones et al., 2000) and PfastreXML when de-
ployed on Bing. Both pointwise and labelwise XReg were
deployed and evaluated. Pointwise XReg increased RPM,
CY, and IY by 5% while maintaining the CTR and BR.
Finally, the labelwise XReg boosts the revenue by 58%, im-
proves query coverage by 27% along with a 48% and 50%
increase in click yield and impression yields at a cost of
only 2% reduction in CTR.
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