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ABSTRACT
WedemonstrateMulti-Scale, Cascaded RNN (MSC-RNN)1, an energy-
efficient recurrent neural network for real-time micro-power radar
classification. Its two-tier architecture is jointly trained to reject
clutter and discriminate displacing sources at different time-scales,
with a lighter lower tier running continuously and a heavier upper
tier invoked infrequently on an on-demand basis. It offers for single
microcontroller devices a better trade-off in accuracy and efficiency,
as well as in clutter suppression and detectability, over competitive
shallow and deep alternatives.
ACM Reference Format:
Dhrubojyoti Roy, Sangeeta Srivastava, Pranshu Jain, Aditya Kusupati, Manik
Varma, and Anish Arora. 2019. Demo Abstract: Lightweight, Deep RNNs for
Radar Classification. In BuildSys ’19: The 6th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation, November
13–14, 2019, New York, NY, USA. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3360322.3361000

1 INTRODUCTION
Efficient data-driven discrimination of targets and activities is apro-
pos in diverse embedded contexts of smart cities and other built
environments. Many applications have resulted for activity recog-
nition, noise complaint discrimination, active transportation moni-
toring and building occupancy estimation [2, 6, 8]. With substantial
growth in the computing capability of Internet of Things (IoT)
devices in the past decade, there is an increased motivation for
embedding sophisticated sensing applications in situ on these de-
vices. Simultaneously, there is increased momentum in migrating
computation from the cloud to the edge for reasons of privacy, cost,
and latency. Among the growing ecosystem of diverse edge sensors
∗Both authors contributed equally to this research.
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that satisfy the above desiderata is the micro-power pulse-Doppler
radar. Pictured in Figure 1(a) is a sub-20 mW version of the device
that can be easily deployed in isolation or integrated with existing
smart city infrastructure.

(a) Hardware (b) Example setting for indoor demo

Figure 1: We use an integrated micro-power pulse-Doppler
radar (PDR)-ARMCortexM3mote in our demo. An example
deployment in an indoor setting is illustrated

An efficient mote-scale radar classifier system needs to contin-
uously suppress background clutter and discriminate legitimate
sources (humans, vehicles, animals, etc.) that displace through the
scene, which are a relatively rare occurrence. However, existing
shallow and deep solutions such as SVMs [6] or RNNs [3, 4] are
either inefficient or compromising in sensing quality in terms of
clutter suppression, source discrimination, or both. We demonstrate
a Multi-Scale, Cascaded Recurrent Neural Network (MSC-RNN) ar-
chitecture that jointly achieves high sensing accuracy and efficiency
in radar classification. It uses RNNs at two different scales to ad-
dress the two aforementioned components of radar sensing. It is
significantly more efficient than heavier RNN alternatives and SVM
solutions with feature handcrafting, and offers better sensing qual-
ity when compared with vanilla EMI-RNN solutions. Thus, MSC-
RNN inherits the best of both worlds – the efficiency of EMI-RNNs
for common case clutter rejection, and the accuracy of windowed
RNNs for source separation.

In this demo, we would demonstrate MSC-RNN in action on a
single microcontroller mote, and highlight its sensing quality and
runtime power consumption.
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Figure 2: MSC-RNN architecture – the lower EMI-FastGRNN
runs continuously, while the upper FastGRNN is invoked
only for legitimate displacements

2 SYSTEM OVERVIEW
2.1 Components
MSC-RNN handles the two sub-problems of clutter rejection and
source discrimination at different time-scales of featurization (see
Figure 2). Since clutter discrimination from displacements is eas-
ier, an early stopping, multi-instance (EMI-) RNN [3] is used. And
since source classification is a harder problem that requires longer
time-scales, an upper-tier RNN [5] is invoked infrequently and
on-demand, only when the lower layer detects a legitimate dis-
placement. Both tiers are jointly trained, and the upper-tier RNN,
when active, operates on the instance-level embeddings computed
by the lower tier. The two components of the architecture are out-
lined below:

2.1.1 FastGRNN. Recurrent Neural Networks (RNNs) have been
state-of-the-art for analyzing sequences and time-series. Traditional
RNNs, even though theoretically all-powerful, fail to reach the best
performance due to unstable training owing to the exploding and
vanishing gradient problem (EVGP). Gated RNNs like LSTM circum-
vent the EVGP issue at the cost of significant compute overheads.
FastRNN [5] provably stabilizes RNN training by helping to avoid
EVGP by using only two additional scalars over the traditional
RNN. FastGRNN is built over FastRNN and it extends the scalars of
FastRNNs to vector gates while maximizing the information reuse.

2.1.2 EMI-RNN. Time-series signals when annotated are never
precise and are noisy while also being coarsely labeled due to vari-
ous factors like human errors and smaller time-frames of activities
themselves. EMI-RNN [3] tackles the problem of signal localization
using a Multi-Instance Learning approach (MIL). EMI-RNN alter-
nates between training the classifier and re-labeling the data based
on the learned classifier until convergence. In the end, EMI-RNN
produces precise signal signatures which are much smaller than the
raw input, thus reducing the computation and memory overhead
over traditional sequential techniques. EMI-RNN also ensures early
detection of clutter or displacement sources, thereby removing the
need for going through the entire signal before making a decision.

2.2 Implementation Details
The radar-mote device used in our demonstration has an ARM
Cortex-M3 microcontroller with 96 KB of RAM and 4 MB of flash
storage. It runs eMote [9], a low-jitter near real-time operating
system with a small footprint. We take several measures to effi-
ciently implement the multi-scale RNN to run at a low duty cy-
cle on the device. These include low-rank representation of hid-
den states, integer quantization, and piecewise-linear approxima-
tions of non-linear functions. For example, tanh(x) can be approx-
imated as: quantTanh(x) = max(min(x , 1),−1), and siдmoid(x) as:
quantSiдm(x) = max(min( x+12 , 1), 0). All matrix and vector opera-
tions are implemented using the CMSIS-DSP library [1].

2.3 Performance Estimates
In our experiments using micro-power radar datasets, MSC-RNN
has a test accuracy of 97.2% with a 100% clutter recall, 92% human
recall and 96% nonhuman recall over 2-second windows. It out-
performs competitive algorithms at mote-scale and offers better
resilience to source type imbalance as is common in radar data. Our
demonstrated solution on the device consumes ∼35 KB of working
memory and, assuming sources are present <3% of the time, ∼25
mW of power including the radar sensor.

3 DEMONSTRATION PLAN
The demo involves subjects parading in front of the radar occasion-
ally, emulating a real-world deployment scenario that is dominated
by environmental clutter. An example setup in an indoor amphithe-
ater is illustrated in Figure 1(b). The demo aims to emphasize two
aspects of the radar classifier:

(1) Clutter Rejection: The absence of detections when there is
nothing in the scene,

(2) Source Discrimination: The correct classification of displacing
sources.

The classification outputs from the radar would be displayed
on a laptop in real-time. An accompanying poster would explain
the key design concepts of the classifier architecture and outline
the training process. After showcasing scripted displacements of
sources, we would invite the attendees to participate as sources as
well. The displacement source types would be selected depending
on the final demo location, for logistical reasons.
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