
RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference

Oindrila Saha1 Aditya Kusupati2 Harsha Vardhan Simhadri1 Manik Varma1 Prateek Jain1

1Microsoft Research, India
2University of Washington, USA

Abstract

Pooling operators are key components in most Convo-
lutional Neural Networks (CNNs) as they serve to down-
sample images, aggregate feature information, and increase
receptive field. However, standard pooling operators re-
duce the feature size gradually to avoid significant loss
in information via gross aggregation. Consequently, typi-
cal CNN architectures are designed to be deep, computa-
tionally expensive and challenging to deploy on RAM con-
strained devices. We introduce RNNPool, a novel pool-
ing operator based on Recurrent Neural Networks (RNNs),
that efficiently aggregate features over large patches of an
image and rapidly downsamples its size. Our empirical
evaluation indicates that an RNNPool layer(s) can effec-
tively replace multiple blocks in a variety of architectures
such as MobileNets [7], DenseNet [5] and can be used
for several vision tasks like image classification and face
detection. That is, RNNPool can significantly decrease
computational complexity and peak RAM usage for infer-
ence while retaining comparable accuracy. Further, we
use RNNPool to construct a novel real-time face detection
method that achieves state-of-the-art MAP within computa-
tional budget afforded by a tiny Cortex M4 microcontroller
with ∼ 256 KB RAM.

1. What is RNNPool?

Consider the output of an intermediate layer in a CNN of
size R×C×f , where f is the number of features/channels.
In typical CNN architectures pooling layers with stride of 2
are used. A layer of 2 × 2 pooling operators (e.g. max or
average) with stride 2 would halve the number of rows (R)
and columns (C). Therefore, for reducing the dimensions
by a factor of 4 current CNN networks would require two
blocks: a stack of convolutions to capture key features in the
image and a pooling layer. Our goal is to reduce the activa-
tion of size R × C × f to say, R/4× C/4× f ′ in a single
layer while retaining information necessary for the down-
stream task. We do so using an RNNPoolLayer illustrated

in Figure 1 that utilizes strided RNNPool operators.

1.1. The RNNPool Operator and the RNNPoolLayer

An RNNPool operator of size (r, c, k, h1, h2) takes as
input an activation patch of size r × c × k corresponding
to k input channels, and uses a pair of RNNs – RNN1

and RNN2 of hidden dimension h1 and h2 respectively –
to sweep the patch horizontally and vertically to produce a
summary of size 1 × 1 × 4h2. While it is possible to use
GRU [1] or LSTM [4] for the RNNs in RNNPool, we use
FastGRNN [6] for its compact size and fewer FLOPs.

An RNNPoolLayer consists of a single RNNPool oper-
ator strided over an input activation map. Note that there
are only two RNNs (RNN1 & RNN2) in an RNNPool
operator, thus weights are shared for both the row-wise
and column-wise passes (RNN1) and all bi-directional
passes (RNN2) across every instance of RNNPool in an
RNNPoolLayer. Further, RNNPoolLayer also takes two
more parameters into account: patch size and the stride.

1.2. Comparing with Pooling Operators

We contrast the down-sampling power of RNNPool
against standard pooling operators. That is, we investi-
gate if the pooling operators maintain accuracy for a down-
stream task even when the pooling receptive field is large.
To this end, we consider the image classification task with
CIFAR-10 dataset but the pooling operator is required to
down-sample the input 32 × 32 image to a 1 × 1 voxel in
one go i.e. both patch size and stride are 32. This is fol-
lowed by a fully connected (FC) layer. RNNPool achieves
an accuracy of 70.63%, while convolution layer, max pool-
ing and average pooling’s accuracy are 53.13%, 20.04%
and 26.53%, respectively. This demonstrates the modeling
power of the RNNPool operator over other pooling meth-
ods. This shows that if we pool aggressively (using stan-
dard operators), the accuracy drop is large. So standard
pooling operators do not suffice for our purpose of RAM
reduction. We show how RNNPool, when combined with
standard models, leads to comparable accuracy on multiple

4321



Ro
w

s 
(r

=4
)

h1 h2

Concatenate 
output of all 
four passes 

of RNN2

4*h2

Columns (c=4)

First sweep with RNN1

(blue arrows share weights)

Second sweep with RNN2

(green arrows share weights)

Hidden state size of RNN1

Hidden state size of RNN2

k #Input channels

h1

h2

RNNPool (r, c, k, h1, h2)

R
o

w
s 

(R
in

)

Columns (Cin)

#Output Columns: Cout = (Cin – c)/S +1

#Output rows
Rout = (Rin – r)/S +1Stride (S)

r

c

RNNPoolLayer (Rin, Cin, S, r, c, k, h1, h2 )

#Columns of Activation map

R #Rows of Activation map

C

S #Stride Size

Figure 1: (left) An RNNPool operator. (right) An RNNPoolLayer composed with strided RNNPool operators with shared weights.

C1
RNNPoolLayer
(8, 8, 112, 112, 4, 64, 48, 48) T2

192

28
112

224

64
3

D3 T3 D4

256 1024 512 1024 1024

14 14 7 7 1

C1 P1

112
224

64
3

D1 T1 D2 T2 D3 T3 D4

64 256 128 512 256 1024 512 1024 1024

56 56 28 28 14 14 7 7 1

Avg Pooling

FC + Softmax

FC + Softmax

DenseNet121-RNNPool

DenseNet121

Figure 2: DenseNet121-RNNPool: obtained by replacing P1, D1, T1 and
D2 blocks in DenseNet121 with an RNNPoolLayer.

tasks but with much smaller RAM/FLOPs requirements in
Tables 1, 2 and 3.

2. How to use the RNNPoolLayer?
RNNPool can be used to modify several state-of-the-

art architectures to reduce their working memory as well as
computational requirements. Typically, such modifications
involve replacing one or more stacks of convolutional and
pooling layers of the “base” (original) architecture with an
RNNPoolLayer and retraining from scratch.

2.1. Replacement for a Sequence of Blocks

Consider the DenseNet121 [5] architecture in Figure 2.
It consists of one convolutional layer, followed by repeti-
tions of “Dense” (D), transition (T) and pooling (P) blocks
which gradually reduce the size of the image while increas-
ing the number of channels. Of all these layers, the first
block following the initial convolutional layer – D1 – re-
quires the maximum working memory and FLOPs as it
deals with large activation maps that are yet to be down-
sampled. Furthermore, the presence of residual connec-
tions between all 6 layers within each dense block exac-
erbates the memory management problem. We can use an
RNNPoolLayer to rapidly downsample the image size and
bypass intermediate large activations. In DenseNet121, we

Table 1: Resources vs accuracy for ImageNet-1K.
Method Peak RAM #Params FLOPs Accuracy (%)

MobileNetV1 3.06MB 4.2M 569M 69.52
MobileNetV1-RNNPool 0.77MB 4.1M 417M 69.39

MobileNetV2 2.29MB 3.4M 300M 71.81
MobileNetV2-RNNPool 0.24MB 3.2M 226M 70.14

EfficientNet-B0 2.29 MB 5.3M 390M 76.30
EfficientNet-B0-RNNPool 0.25 MB 5.2M 330M 72.47

Table 2: Comparison of memory requirement, # parameters and validation
MAP obtained by different methods for Face Detection on the WIDER
FACE dataset [8]. RNNPool-Face-C is able to achieve higher accuracy
than the baselines despite using 3× less RAM and 4.5× less FLOPs.
RNNPool-Face-Quant enables deployment on Cortex M4 class devices
with 6-7% accuracy gains over the cheapest baselines.

Method Peak RAM Parameters FLOPs MAP MAP for ≤ 3 faces
Easy Medium Hard Easy Medium Hard

EagleEye[12] 1.17 MB 0.23M 0.08G 0.74 0.70 0.44 0.79 0.78 0.75
RNNPool-Face-A 1.17 MB 0.06M 0.10G 0.77 0.75 0.53 0.81 0.79 0.77

FaceBoxes[10] 1.76 MB 1.01M 2.84G 0.84 0.77 0.39 - - -
RNNPool-Face-B 1.76 MB 1.12M 1.18G 0.87 0.84 0.67 0.91 0.90 0.88

EXTD[9] 18.75 MB 0.07M 8.49G 0.90 0.88 0.82 0.93 0.93 0.91
LFFD[3] 18.75 MB 2.15M 9.25G 0.91 0.88 0.77 0.83 0.83 0.82
RNNPool-Face-C 6.44 MB 1.52M 1.80G 0.92 0.89 0.70 0.95 0.94 0.92

RNNPool-Face-Quant 225 KB 0.07M 0.12G 0.80 0.78 0.53 0.84 0.83 0.81

85

86

87

88

89

90

91

0 10 20 30 40 50 60

85

86

87

88

89

90

91

0 50 100 150 200 250 300

250 KB 
constraint

Peak Memory Usage (KB) FLOPs (Millions)

A
cc

u
ra

cy
 (

%
)

A
cc

u
ra

cy
 (

%
)

60 million 
MAdds/

inference

MobileNet-v2-RP (0.35x)
MobileNet-v2 (0.35x)

(a) (b)

Figure 3: Visual Wake Word [2]: MobileNetV2-RNNPool requires 8×
less RAM and 40% less compute than baselines. We also cap our number
of parameters to be ≤ 250K instead of 290K of MobileNetV2 (0.35×).

can replace 4 blocks - P1, D1, T1, D2 - spanning 39 layers
with a single RNNPoolLayer to reduce the activation map
from size 112 × 112 to 28 × 28 (see Figure 2). The re-
placement RNNPoolLayer can be executed patch-by-patch
without re-computation, thus reducing the need to store the
entire activation map across the image. These two factors
contribute greatly to the reduction in working memory size
as well as the number of computations. Table 1 and Fig-
ure 3, illustrate the reduction of resources wrt baselines on
classification tasks while using RNNPool following above
strategy, while not compromising on accuracy.

2.2. New Architectures for Face Detection

Using RNNPoolLayer, we design new architectures for
face detection that achieve higher MAP scores than state-of-
the-art and are compact enough for real-time face detection
on weak microcontrollers. We start with the structure of
S3FD [11]. Instead of applying one convolution layer and

4322



then applying RNNPoolLayer, we directly down-sample
the image by a factor of 1/4 via RNNPoolLayer. This is
critical as for the smallest faces, the anchor box size is set as
16× 16 and the required stride is 4. Further, for efficiency,
we use depthwise separable convolutions followed by point-
wise convolutions before using inverted residual (MBConv)
blocks. We also create an architecture which can fit within
the resource constraints to be deployed on a Cortex M4 mi-
crocontroller i.e. it has the peak RAM usage as ≤ 256 KB
and inference cost ≤ 128 MFLOPs (latency ≤ 1s) while
having a competitive MAP (Table 2).

References
[1] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

[2] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, An-
drew Howard, and Rocky Rhodes. Visual wake words
dataset. arXiv preprint arXiv:1906.05721, 2019.

[3] Yonghao He, Dezhong Xu, Lifang Wu, Meng Jian, Shiming
Xiang, and Chunhong Pan. LFFD: A light and fast face de-
tector for edge devices. arXiv preprint arXiv:1904.10633,
2019.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[5] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[6] Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Ku-
mar, Prateek Jain, and Manik Varma. FastGRNN: A fast,
accurate, stable and tiny kilobyte sized gated recurrent neu-
ral network. In Advances in Neural Information Processing
Systems, pages 9017–9028, 2018.

[7] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[8] Shuo Yang, Ping Luo, Chen-Change Loy, and Xiaoou Tang.
Wider face: A face detection benchmark. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 5525–5533, 2016.

[9] YoungJoon Yoo, Dongyoon Han, and Sangdoo Yun. EXTD:
Extremely tiny face detector via iterative filter reuse. arXiv
preprint arXiv:1906.06579, 2019.

[10] Shifeng Zhang, Xiangyu Zhu, Zhen Lei, Hailin Shi, Xiaobo
Wang, and Stan Z Li. Faceboxes: A CPU real-time face de-
tector with high accuracy. In 2017 IEEE International Joint
Conference on Biometrics (IJCB), pages 1–9. IEEE, 2017.

[11] Shifeng Zhang, Xiangyu Zhu, Zhen Lei, Hailin Shi, Xiaobo
Wang, and Stan Z Li. S3fd: Single shot scale-invariant face
detector. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 192–201, 2017.

EagleEye RNNPool-Face-Quant

Figure 4: Comparison of performance on test images
with Eagle-Eye and RNNPool-Face-Quant. The confidence
threshold is set at 0.6 for both models. EagleEye misses
faces when there is makeup, occlusion, blurriness and in
grainy pictures, while our method is detecting them. How-
ever, in the case of some hard faces, RNNPool-Face-Quant
still misses a few of them or doesn’t give out a bounding
box containing the full face.

[12] Xu Zhao, Xiaoqing Liang, Chaoyang Zhao, Ming Tang, and
Jinqiao Wang. Real-time multi-scale face detector on em-
bedded devices. Sensors, 19(9):2158, 2019.

4323


