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Figure 1: MERLOT Reserve learns multimodal neural script knowledge representations of video – jointly reasoning over
video frames, text, and audio. Our model is pretrained to predict which snippet of text (and audio) might be hidden by the MASK.
This task enables it to perform well on a variety of vision-and-language tasks, in both zero-shot and finetuned settings.

Abstract
As humans, we navigate the world through all our senses,

using perceptual input from each one to correct the others. We
introduce MERLOT Reserve, a model that represents
videos jointly over time – through a new training objective
that learns from audio, subtitles, and video frames. Given a
video, we replace snippets of text and audio with a MASK token;
the model learns by choosing the correct masked-out snippet.
Our objective learns faster than alternatives, and performs
well at scale: we pretrain on 20 million YouTube videos.

Empirical results show that MERLOT Reserve
learns strong representations about videos through all con-
stituent modalities. When finetuned, it sets a new state-of-the-
art on both VCR and TVQA, outperforming prior work by 5%
and 7% respectively. Ablations show that both tasks benefit
from audio pretraining – even VCR, a QA task centered
around images (without sound). Moreover, our objective en-
ables out-of-the-box prediction, revealing strong multimodal
commonsense understanding. In a fully zero-shot setting, our
model obtains competitive results on four video understand-
ing tasks, even outperforming supervised approaches on the
recently proposed Situated Reasoning (STAR) benchmark.

We analyze why incorporating audio leads to better vision-
language representations, suggesting significant opportuni-
ties for future research. We conclude by discussing ethical
and societal implications of multimodal pretraining.

1. Introduction
The world around us is dynamic. We experience and

learn from it using all of our senses, reasoning over them
temporally through multimodal script knowledge [98, 126].
Consider Figure 1, which depicts someone cooking popcorn.
From the images and dialogue alone, we might be able to
imagine what sounds of the scene are: the process might
begin with raw kernels scattering in an empty, metallic pot,
and end with the dynamic ‘pops’ of popcorn expanding,
along with the jiggling of a metal around the stove.

Predicting this sound is an instance of learning from reen-
try: where time-locked correlations enable one modality to
educate others. Reentry has been hypothesized by develop-
mental psychologists to be crucial for how we as humans
learn visual and world knowledge, much of it without need
for an explicit teacher [88, 35, 19, 100]. Yet, we ask – can
we build machines that likewise learn vision, language, and
sound together? And can this paradigm enable learning neu-
ral script knowledge, that transfers to language-and-vision
tasks, even those without sound?

In this work, we study these questions, and find that
the answers are ‘yes.’ We introduce a new model that
learns self-supervised representations of videos, through all
their modalities (audio, subtitles, vision). We dub our model

MERLOT Reserve1, henceforth Reserve for short.

1Short for Multimodal Event Representation Learning Over Time, with
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Our model differs from past work that learns from audio-
image pairs [53, 70], from subtitled videos [105, 126], or
from static images with literal descriptions [106, 20, 91].
Instead, we learn joint representations from all modalities of
a video, using each modality to teach others. We do this at
scale, training on over 20 million YouTube videos.

We introduce a new contrastive masked span learning
objective to learn script knowledge across modalities. It
generalizes and outperforms a variety of previously proposed
approaches (e.g. [29, 106, 91, 126]), while enabling audio to
be used as signal. The idea is outlined in Figure 1: the model
must figure out which span of text (or audio) was MASKed
out of a video sequence. We combine our objective with a
second contrastive learning approach, tailored to learning
visual recognition from scratch: the model must also match
each video frame to a contextualized representation of the
video’s transcript [126]. Through ablations, we show that our
framework enables rapid pretraining of a model and readily
scales to ‘large’ transformer sizes (of 644M parameters).

Experimental results show that Reserve learns pow-
erful representations, useful even for tasks posed over only a
subset of the studiedmodalities. For example, when finetuned
onVisual CommonsenseReasoning [124] (a vision+language
task with no audio), it sets a new state-of-the-art, outper-
forming models trained on supervised image-caption pairs
by over 5%. It does even better on video tasks: fine-tuning
without audio, it outperforms prior work on TVQA [74] by a
margin of over 7% (and given TVQA audio, performance
increases even further). These performance improvements
do not come at the expense of efficiency: our largest model
uses one-fifths the FLOPs of a VisualBERT.

Reserve also performs well in zero-shot settings. We
evaluate on four diverse benchmarks: Situated Reasoning
(STAR) [119], EPIC-Kitchens [26], LSMDC-FiB [95], and
MSR-VTT QA [120]. These benchmarks require visual
reasoning with respective emphasis on temporality, future
prediction, and both social and physical understanding. With
no fine-tuning or supervision, our model obtains competitive
performance on each. Of note, it nearly doubles [122]’s SoTA
zero-shot accuracy on MSR-VTT QA, and it outperforms
supervised approaches (like ClipBERT [73]) on STAR.

Finally, we investigate why, and on which training in-
stances audio-powered multimodal pretraining particularly
helps. For instance, predicting audio rewards models for
recognizing dynamic state changes (like cooked popcorn)
and human communication dynamics (what are people’s emo-
tions and towards whom). Our model progressively learns
these phenomena as pretraining progresses. These signals
are often orthogonal to what snippets of text provide, which
motivates learning from both modalities.

In summary, our key contributions are the following:

Re-entrant Supervision of Events.

a. Reserve, a model for multimodal script knowledge,
fusing vision, audio, and text.

b. A new contrastive span matching objective, enabling our
model to learn from text and audio self-supervision.

c. Experiments, ablations, and analysis, that demonstrate
strong multimodal video representations.

Overall, the results suggest that learning representations from
all modalities – in a time-locked, reentrant manner – is a
promising direction, and one that has significant space for
future work. We release code and model checkpoints at
rowanzellers.com/merlotreserve.

2. Related Work
Our work brings together two active lines of research.

Joint representations of multiple modalities. Many
language-and-vision tasks benefit from early fusion of dif-
ferent modalities [7]. A family of ‘VisualBERT’ models
have been proposed for this: typically, these use a supervised
object detector image encoder backbone, and pretrain on
images paired with literal captions [106, 76, 80, 20, 123, 73].
Cross-modal interactions are learned in part through amasked
language modeling (mask LM) objective [29], where sub-
words are replaced with ‘MASK’, and models independently
predict each subword conditioned on both images and un-
masked tokens.2 Extensions to this paradigm include audio
in the captioning setting [61] – for instance, OPT [78] was
trained on image-caption pairs narrated by a text-to-speech
system; yet like the other approaches, this still only learns
(from audio) at the level of literal captions.

Perhaps closest to our work is MERLOT [126], which
learns a joint vision-text model from web videos with au-
tomatic speech recognition (ASR). Through a combination
of objectives (including a variant of mask LM), MERLOT
established strong results on a variety of video QA bench-
marks when finetuned. However, it lacks audio: it is limited
to learning from (and representing) video frames paired with
subtitles. Our proposed Reserve, which represents and
learns from audio, outperforms MERLOT.

Co-supervision between modalities. A common pitfall
when training a joint multimodal model is that complex
inter-modal interactions can be ignored during learning, in
favor of simpler intra-modal interactions [50, 23, 58]. For
example, when using the aforementioned mask LM objective,
models often ignore visual input completely in favor of text-
text interactions [13]; this issue is magnified when training
on videos with ASR, as spoken language often contains
redundant words [126].

As a result, a line of recent work has learned independent
modality-specific encoders coupled with objectives that can’t

2Recent papers propose exceptions, like generating masked-out spans
[21] or text [77, 116], but it is unclear whether they can outperform the
‘VisualBert’s on vision-language tasks like VCR [124].
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be shortcutted with simple intra-modal patterns. Models like
CLIP learn image classification by matching images with
their captions, contrastively [130, 91, 62]. Recent work has
explored this paradigm for matching video frames with their
transcripts [121], with their audio signal [96, 114], or both
[3, 2]; these works likewise perform well on single-modality
tasks like audio classification and activity recognition. These
independent encoders can be combined through late fusion
[96], yet late fusion is strictly less expressive than our pro-
posed joint encoding (early fusion) approach.

Our work combines both lines of research. We train a
joint model using all modalities in a video – vision, text, and
audio – and use a new objective to enable co-supervision
betweenmodalities. For instance, we can learn a strongmodel
of vision-and-text in part by using audio as supervision: when
the audio is of ‘MASKed-out’ regions of the video, models
cannot easily ‘cheat’ by learning intra-modal vision-vision
or text-text interactions (Figure 1). We turn to this next.

3. Model: Reserve

In this section, we present Reserve, including:
our model architecture (3.1), new pretraining objectives
(3.2), and pretraining video dataset (3.3). At a high level,

Reserve represents a video by fusing its constituent
modalities (vision, audio, and text from transcribed speech)
together, and over time. These representations enable both
finetuned and zero-shot downstream applications.

More formally, we split a video V into a sequence of
non-overlapping segments in time {st}. Each segment has:

a. A frame vt, from the middle of the segment,
b. The ASR tokens wt spoken during the segment,
c. The audio at of the segment.

Segments default to 5 seconds in length; we discuss details
of how we split videos into segments in Appendix C.

As the text wt was automatically transcribed by a model
given audio at, it is reasonable to assume that it contains
strictly less information content.3 Thus, for each segment
st, we provide models with exactly one of text or audio. We
will further mask out portions of the text and audio during
pretraining, to challenge models to recover what is missing.

3.1. Model architecture

An overview of Reserve is shown in Figure 2. Each
modality is first encoded independently by a separate encoder
(a Transformer [110] for images/audio; a BPE lookup table

3Despite being derived from the audio, pretraining with text is still
paramount: 1) in §3.2 we discuss how jointly modeling audio+text prevents
models from shortcutting pretraining objectives via surface correlations;
2) in §4.2 we show that incorporating both transcripts and audio during
fine-tuning improves performance; and 3) a textual interface to the model is
required for downstream vision+language with textual inputs.

inputs for segment t
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Figure 2: Reserve architecture. We provide sequence-
level representations of video frames, and either words or
audio, to a joint encoder. The joint encoder contextualizes
over modalities and timesteps, to predict what is behind
MASK for audio ât and text ŵt. We supervise these predictions
with independently encoded targets: at from the audio
encoder, and wt from a separate text encoder (not shown).

for text). Then, the representations will be combined with a
joint encoder. All encoders are bidirectional.

Image encoder. We first encode each frame indepen-
dently with a Vision Transformer (ViT; [34]), which rep-
resents an image of dimensions H×W as a sequence of
16×16-pixel patches. We conserve memory in the joint
encoder by then performing a 2x2 pooling of the feature map,
giving us a final H/32×W/32 sequence of dimension dh.4

Audio encoder. We split the audio in each segment at

into three equal-sized subsegments, for compatibility with the
lengths at which we mask text (Appendix C). Each subseg-
ment is encoded independently using an Audio Spectrogram
Transformer (AST; [46]), which treats each subsegment as
an M×T image to be ViT-encoded (where M=64 is the
Mel filterbank size, and T=30 is time). We treat it as a
one-dimensional sequence by using a patch size of M×2.
We attention-pool the resulting feature map with a window
size of 5, giving a final feature map of T/10=6.

Text encoder. We provide text to our model by BPE-
encoding it, embedding the result with a learned table [99].

Joint encoder. Finally, we jointly encode all modalities
(over all input video segments) using a bidirectional Trans-
former. We use a linear projection of the final layer’s hidden
states for all objectives (e.g. ŵt and ât).

Contrastive targets. Our contrastive pretraining objec-
tives (3.2) require independently-encoded targets for each
modality.5 Doing this is straightforward for the image and

4We pool through self-attention: the query is the average of the vectors
in the 2x2 grid; the keys and values are learned projections of the vectors.

5Otherwise, a model can trivially cheat by coordinating predictions [6].
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Figure 3: Contrastive span training. Given a video with all
modalities temporally aligned, we MASK out a region of text
and audio. The model must maximize its similarity only to
an independent encoding of the text wt and audio at.

audio encoders: we add a CLS to their respective inputs,
and extract the final hidden state vt or at at that position.6
For text, we learn a separate bidirectional Transformer span
encoder, which computes targetswt from a CLS and (shared)
embedded tokens of a candidate text span. This will also
enable zero-shot prediction (4.3).

Architecture sizes. We consider two model sizes in this
work, which we pretrain from random initialization:
1. Reserve-B, with a hidden size of 768, a 12-layer

ViT-B/16 image encoder, and a 12-layer joint encoder.
2. Reserve-L, with a hidden size of 1024, a 24-layer

ViT-L/16 image encoder, and a 24-layer joint encoder.
We always use a 12-layer audio encoder, and a 4-layer text
span encoder. We pretrain on 192x320 images, and adapt the
resolution to 288x512 widescreen images for downstream
tasks. To simplify adapting to variable input sizes, we
eschew learned position embeddings in favor of a multi-
dimensional rotary position encoding [104, 10]. Details and
hyperparameters are in Appendix B.

3.2. Contrastive Span Training

We introduce contrastive span training, which enables
learning across and between the three modalities. As shown
in Figure 3, the model is given a sequence of video segments.
For each one, we include the video frame, and then three
‘subsegments’, each that are either text or audio (never both,
due to redundancy of text given audio). We train by replacing
25% of these text and audio subsegments with a special
MASK token. The model must match the representation atop
the MASK only with an independent encoding of its span.

Our approach combines past success at matching images
to their captions [91, 62] along with ‘VisualBERT’-style
prediction of independent tokens [106, 20] – though, crucially,

6The CLS hidden states are not involved in the spatial pooling, and
likewise are not given to the joint encoder.

we predict representations at a higher-level semantic unit
than individual tokens. Our approach also enables the
model to learn from both audio and text, while discouraging
memorization of raw perceptual input, or tokens – which can
harm representation quality [112].

Formally, we minimize the cross entropy between the
MASKed prediction ŵt and its corresponding phrase represen-
tation wt, versus others in the batchW:

Lmask→text=
1

|W|
∑

wt∈W

(
log

exp(σŵt ·wt)∑
w∈W exp(σŵt ·w)

)
. (1)

We first L2-normalize w and ŵ, and scale their dot product
with a parameter σ [91].7 We then add this to its trans-
posed version Ltext→mask, giving us our text-based loss Ltext.
Analogously, we define Laudio for audio, between the MASKed
prediction ât and its target at, versus others a in the batch.

In addition to these masked text and audio objectives, we
simultaneously train the model to match video frames with
a contextualized encoding of the transcript. In MERLOT
[126], this objective was found to be critical for learning
visual recognition from self-supervised videos. Here, the
joint encoder encodes the entire video’s transcript at once,
extracting a single hidden representation per segment v̂t. We
use the same contrastive setup as Equation 1 to maximize the
similarity of these vectors with the corresponding vt vectors
from the frames, giving us a symmetric frame-based loss
Lframe. The final loss is the sum of the component losses:

L = Ltext + Laudio + Lframe. (2)

Avoiding shortcut learning. Early on, we observed that
training a model to predict a perceptual modality (like audio
or vision) given input from the same modality, led to shortcut
learning – a low training loss, but poor representations. We
hypothesize that this setup encourages models to learn imper-
ceptible features, like the exact model of the microphone, or
the chromatic aberration of the camera lens [33]. We avoid
this, while still using audio as a target, by simultaneously
training on two kinds of masked videos:
i. Audio only as target. We provide only text and video

frames. The model produces representations of both
audio and text that fill in MASKed blanks. It thus learns
from audio supervision, without intra-modality shortcuts.

ii. Audio as input. We provide the model video frames, and
audio (or subtitles) at each segment. Because the model
is given audio as an input somewhere, the model only
produces representations for MASKed text.
There is one more data issue that must be addressed

to avoid shortcuts. YouTube’s captions are not perfectly
time-aligned with the underlying audio. During our initial

7Following past work, we optimize σ and clip it at 100, which enables
the model to ‘warm-up’ its emphasis placed on hard negatives [91, 113].
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exploration, models took ready advantage of this shortcut:
for instance, predicting an audio span based on what adjacent
(overlapping) words sound like. We introduce a masking
algorithm to resolve this; details in Appendix C.

Pretraining setup. We train Reserve on TPU v3-
512 accelerators; training takes 5 days for Reserve-B,
and 16 days for Reserve-L. We made pretraining more
efficient through several algorithmic and implementation
improvements, listed in full in Appendix B.5. Of note, we
provide the joint encoder at most N=8 frames at a time, and
incorporate extra contrastive text negatives from written text.

We use a batch size of 1024 videos, each with N=16
segments. The transcript frame matching task uses all 16384
images from the batch. Likewise, the contrastive span task
uses all 49152 audio clips and text candidates in the batch.
We use AdamW [68, 79] to minimize Equation 2, details and
hyperparameters are in Appendix B.5.

3.3. Pretraining Dataset

Recent prior work on static images that demonstrates
empirical improvements by increasing dataset size – all the
way up to JFT-3B [69, 34, 91, 128]. The same pattern
emerges in videos: prior work that has shown promising
empirical improvements not only by scaling to 6 million
videos/180M frames [126], but also by collecting a diverse
set (i.e., going beyond instructional videos [59]).

To this end, we introduce a new training dataset of 20 mil-
lion English-subtitled YouTube videos, and 1 billion frames,
called YT-Temporal-1B. At the same time, we take steps
to protect user privacy, directing scraping towards public,
large, and monetized channels. We detail our collection,
preprocessing, and release strategy in Appendix E.

4. Experiments
In this section, we show that a finetuned Reserve ob-

tains state-of-the-art results on both VCR [124] as well as
TVQA [74], suggesting strong multimodal script knowledge
understanding. We then show that our model has strong
zero-shot capability, over four challenging zero-shot tasks.

4.1. Visual Commonsense Reasoning

We evaluate Reserve first through finetuning on VCR
[124], a challenging multiple choice task that is commonly
used as a benchmark for vision-and-language models. Most
competitive models for VCR learn exclusively from images
paired with captions, often with supervised visual represen-
tations (like from an object detector). To the best of our
knowledge, the only exception is MERLOT [126], which
uses YouTube video frames and text as part of pretraining;
no VCR model to date was pretrained on audio.

VCR Task. A model is given an image from a movie,
and a question. The model must choose the correct answer

given four multiple choice options (Q→A); it then is given
four rationales justifying the answer, and it must choose
the correct one (QA→R). The results are combined with a
Q→ARmetric, where a model must choose the right answer
and then the right rationale, to get the question ‘correct.’

Finetuning approach. We finetune models using [126]’s
approach: ‘drawing on’ VCR’s detection tags directly onto
the image, and jointly finetuning on Q→A and QA→R.
For both subproblems, we consider four sequences (one per
answer or rationale option). Each sequence has pooled image
features, the question (and, in QA→R, the answer); and
then the option. We pool a hidden representation from a
MASK inserted after the text. Using a newly-initialized dh
vector, we extract a logit for that candidate, and use cross-
entropy to optimize that score (details in Appendix D.1.1.)

4.1.1 Ablations: contrastive learning with audio helps.

While we present our final, state-of-the-art VCR performance
in 4.1.2, we first use the corpus for an ablation study, em-
pirically justifying design decisions of our pretraining setup.
We use the same architecture and data throughout, allowing
apples-to-apples comparison between modeling decisions.8

Contrastive Span helps forVision+Textmodeling. We
start by comparing pretraining objectives for learning from
YouTube ASR and video alone:
a. Mask LM. This objective trains a bidirectional model

by having it independently predict masked-out tokens.
We make this baseline as strong as possible by using
SpanBERT-style masking [63], where text spans are
masked out (identical to our contrastive spans).
Each span w is replaced by a MASK token. We predict
each of its subwords wi independently: like [63], we
concatenate the MASK’s hidden state with a position em-
bedding for index i, pass the result through a two-layer
MLP, and use tied embedding weights to predict wi.

b. VirTex [27]. In this objective, we likewise mask text
subsegments and extract their hidden states. The differ-
ence is that we sequentially predict tokenswi ∈ w, using
a left-to-right language model (LM) with the same archi-
tecture details as our proposed span encoder. The LM is
given the pooled hidden state, and uses tied embeddings
to predict new tokens wi+1 conditioned on previous w<i.
Results are in Table 1. Versus these widely used baselines,

our contrastive span objective boosts performance by over
2%, after one epoch of pretraining only on vision and text. We
hypothesize that its faster learning is caused by encouraging
models to learn concept-level span representations; this might
not happen when predicting tokens individually [22].

8We use the transcript-frame matching objective throughout, as MER-
LOT [126]’s ablations demonstrate that it is indispensable when training
vision representations from random initialization. Our starting ‘Mask LM’
configuration is similar to MERLOT’s, and we improve from there.
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Configuration
for one epoch of pretraining

VCR
Q→A

val
(%)

V
+T

Mask LM [29, 106, 126] 67.2
VirTex-style [27] 67.8

Contrastive Span 69.7

V
+T

+A

Audio as target 70.4
Audio as input and target 70.7

Audio as input and target,
but sans strict localization 70.6

Reserve-B 71.9

Table 1: Ablation study of our contrastive
span objective. It outperforms prior work
even without audio; with an additional 1%
boost when audio is used. Our full setup,
adding written text, improves another 1%.
A denotes a component of our full model.
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Figure 4: Pretraining progress:
performance on contrastive-span
pretraining, vs. finetuned VCR
validation accuracy. Pretraining

Reserve-B for 9 more epochs
boosts performance by 5%; L by 8%.

VCR (test)
Model Q→A QA→R Q→AR

Ca
pt
io
n/
O
bj
D
et
-b
as
ed ERNIE-ViL-Large [123] 79.2 83.5 66.3

Villa-Large [39] 78.9 83.8 65.7
UNITER-Large [20] 77.3 80.8 62.8
Villa-Base [39] 76.4 79.1 60.6
VilBERT [80] 73.3 74.6 54.8
B2T2 [4] 72.6 75.7 55.0
VisualBERT [76] 71.6 73.2 52.4

V
id
eo
-b
as
ed MERLOT [126] 80.6 80.4 65.1

Reserve-B 79.3 78.7 62.6
Reserve-L 84.0 84.9 72.0

Table 2: Reserve gets state-of-the-
art leaderboard performance on VCR.
We compare it with the largest submitted
single models, including image-caption
models that utilize heavy manual supervi-
sion (e.g. object detections and captions).

Audio pretraining helps, even for the audio-less VCR:
d. Audio as target. Here, the model is only given video

frames and ASR text as input. In addition to performing
contrastive-span pretraining over themissing text spans, it
does the same over the (held-out) audio span (Equation 2.
This boosts VCR accuracy by 0.7%.

e. Audio as input and target. The model does the above
(for video+text input sequences), and simultaneously
is given video+text+audio sequences, wherein it must
predict missing text. This boosts accuracy by 1% in total.

f. Sans strict localization. We evaluate the importance
of our strict localization in time. Here, in addition to
correct subsegments at the true position t as a correct
match, we count adjacent MASKed out regions as well. An
extreme version of this was proposed by [48], where a
positive match can be of any two frames in a video. Yet
even in our conservative implementation, performance
drops slightly, suggesting localization helps.

Putting these all together, we find that contrastive span pre-
training outperforms mask LM, with improved performance
when audio is used both as input and target. For our flag-
ship model, we report results in Table 1 on simultaneously
training on web-text sequences as well (Appendix C.4), this
improves performance by an additional 1%.
4.1.2 VCR Results
Encouraged by these results, we train our models for 10
epochs on YT-Temporal-1B. Figure 4 demonstrates that fine-
tunedVCRperformance trackswith the number of pretraining
epochs, as well as the validation loss.9

9The plot suggests that if we pretrained longer, VCR performance might
continue to increase. While this could be true, an additional confounding
factor is the learning rate decay schedule. With access to compute beyond
our current capacity, future work would be well-suited to consider this and
other pre-training modifications.

Finally, in Table 2, we compare Reserve against the
largest published models from the VCR leaderboard. Of note,

Reserve-L outperforms all prior work, by over 5% on
Q→ARmetric. It outperforms even large ensembles (e.g. 15
ERNIE-Large’s) submitted by industry [123], though we do
not show these on this table to focus on only single models.

Efficiency. The accuracy increase of Reserve is
not simply due to compute.10 In fact, our Reserve-L
requires one-fifth the FLOPs of detector-based systems, like
UNITER-Large [20] (Appendix B.3). Moreover, because

Reserve-L uses a pure ViT backbone versusMERLOT’s
ViT-ResNet hybrid, it uses fewer FLOPs than MERLOT,
while scoring 7% higher. Meanwhile, Reserve-B out-
performs ‘base’ detector-based models, while using less than
one-tenth their FLOPs.

In terms of parameter count, Reserve-B is compa-
rable to prior work. On VCR, including the vision stack,

Reserve-B has 200M finetunable parameters and per-
forms similarly to the 378M parameter UNITER-Large.

Reserve-L has 644M parameters.

4.2. Finetuning on TVQA

We use TVQA [74] to evaluate our model’s capacity to
transfer to video understanding tasks when finetuned. In
TVQA, models are given a video, a question, and five answer
choices. The scenes come from American TV shows, and
depict characters interacting with each other through dialogue
– which past work represents through subtitles. We will show
that providing audio to Reserve improves performance.

Audio-Subtitle Finetuning. To evaluate howmuch audio
can help for TVQA,we finetune Reserve jointly between

10Here, we use FLOPs as our key efficiency metric, as they are a critical
bottleneck in model scaling [65, 34, 128]. On the other hand, we argue
that parameter count can be misleading – for instance, many Transformer
parameters can be tied together with minimal performance loss [71].
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TVQA (acc; %)

Model Val Test
Human [74] – 89.4

Su
bt
itl
es

MERLOT [126] 78.7 78.4
MMFT-BERT [109] 73.5 72.8
Kim et al [67] 76.2 76.1

Reserve-B (subtitles) 81.3 –
Reserve-L (subtitles) 85.6 84.8

A
ud

io Reserve-B (audio) 82.5 –
Reserve-L (audio) 85.9 85.6

Bo
th Reserve-B 83.1 82.7

Reserve-L 86.5 86.1

Table 3: Reserve gets state-
of-the-art results on TVQA by a
margin of over 7%, over meth-
ods from prior work – that do not
make use of audio information.

Situated Reasoning (STAR)
(test acc; %)

EPIC-Kitchens
(val class-mean R@5; %)

LSMDC
(FiB test %)

MSR-VTT QA
(test acc %)

Model Interaction Sequence Prediction Feasibility Overall Verb Noun Action Acc top1 top5

Supervised SoTA ClipBERT [73] AVT+ [45] MERLOT [126]
39.8 43.6 32.3 31.4 36.7 28.2 32.0 15.9 52.9 43.1

ze
ro
-s
ho
t

Random 25.0 25.0 25.0 25.0 25.0 6.2 2.3 0.1 0.1 0.1 0.5
CLIP (VIT-B/16) [91] 39.8 40.5 35.5 36.0 38.0 16.5 12.8 2.3 2.0 3.0 11.9
CLIP (RN50x16) [91] 39.9 41.7 36.5 37.0 38.7 13.4 14.5 2.1 2.3 2.3 9.7
Just Ask (ZS)[122] 2.9 8.8

Reserve-B 44.4 40.1 38.1 35.0 39.4 17.9 15.6 2.7 26.1 3.7 10.8
Reserve-L 42.6 41.1 37.4 32.2 38.3 15.6 19.3 4.5 26.7 4.4 11.5
Reserve-B (+audio) 44.8 42.4 38.8 36.2 40.5 20.9 17.5 3.7 29.1 4.0 12.0
Reserve-L (+audio) 43.9 42.6 37.6 33.6 39.4 23.2 23.7 4.8 31.0 5.8 13.6

Table 4: Zero shot results. On STAR, Reserve obtains state-of-the-art results,
outperforming finetuned video models. It performs well on EPIC-Kitchens (verb and noun
forecasting), along with LSMDC, despite their long-tail distributions. On MSR-VTT QA,
it outperforms past work on weakly-supervised video QA. Further, it outperforms CLIP
(that cannot handle dynamic situations), and benefits from audio when given.

the ‘vision and subtitles’ and ‘vision and audio’ settings.
Like on VCR, we consider one sequence per candidate:
each contains video frame features, the question, the answer
candidate, and a MASK token (from where we pool a hidden
representation). During training, each sequence is duplicated:
we provide one sequence with subtitles from the video, and
for the other, we use audio. This lets us train a single model,
and then test how it will do given subtitles, given audio, or
given both (by averaging the two softmax predictions)

Results. We show TVQA results in Table 3. Without
audio so as to enable fair comparison, our Reserve-B
outperforms all prior work with a margin of 2.6%. Au-
dio performs even better than subtitles. And, combining
subtitle-only and audio-only predictions performs best of all,
improving over 4% versus the prior state-of-the-art, MER-
LOT (and in turn over other models). The same pattern holds
(with additional performance gains) as model size increases:

Reserve-L improves over prior work by 7.6%.

4.3. Zero-Shot Experiments

Next, we show that our model exhibits strong zero-shot
performance for a variety of downstream tasks. Our zero-shot
interface is enabled by our contrastive span objective. For
QA tasks that require predicting an option from a label space
of short phrases, we encode this label space as vectors, and
predict the closest phrase to a MASKed input. We consider:

i. Situated Reasoning (STAR) [119]. This task requires the
model to reason over short situations in videos, covering
four axes: interaction, sequence, prediction, and feasibil-
ity. The model is given a video, a templated question, and
4 answer choices. We convert templated questions into
literal statements (which are more similar to YouTube
dialogue); the label space is the set of four options.

ii. Action Anticipation in Epic Kitchens [26]. Here, the
goal is to predict future actions given a video clip, which
requires reasoning temporally over an actor’s motivations

and intentions. The dataset has a long tail of rare action
combinations, making zero-shot inference challenging
(since we do not assume access to this prior). As such,
prior work [45, 38] trains on the provided in-domain
training set. To adapt Reserve to this task, we
provide it a single MASK token as text input, and use as our
label space of all combinations of verbs and nouns in the
vocabulary (e.g. ‘cook apple, cook avocado’, etc.).

iii. LSMDC [81, 95]. Models are given a video clip, along
with a video description (with a MASK to be filled in). We
compare it with the vocabulary used in prior work [126].

iv. MSR-VTT QA [120]. This is an open-ended video QA
task about what is literally happening in a web video. We
use GPT3 [16], prompted with a dozen (unlabelled) ques-
tions, to reword the questions into statements with MASKs.
This introduces some errors, but minimizes domain shift.
We use [122]’s label space, with 1k options.

For these tasks, we use N=8 video segments (dilating time
when appropriate), and provide audio input when possible.
Details and prompts are in Appendix D. We compare against
both finetuned and zeroshot models, including running CLIP
[91] on all tasks. CLIP is a strong model for zero-shot
classification, particularly when encyclopedic knowledge
about images is helpful; our comparisons showcase where
multimodal script knowledge helps.

Results. Table 4 shows our model performs competitively:

i. On STAR, it obtains state-of-the-art results, with per-
formance gain when audio is included. Interestingly,

Reserve-B outperforms its larger variant; we hy-
pothesize that this is due to limited prompt searching
around question templates. We qualitatively observed
that Reserve-L sometimes excludes topically correct
options if they sound grammatically strange (to it).

ii. On EPIC-Kitchens, our model obtains strong results at
correctly anticipating the verb and noun - despite the
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stretch in the calf press 
and push your hands 
into the floor for more 

stretch i know

... ... on the right leg for 
the maximum

left leg bent and place 
on top of right

leg extended 
completely straight and 

heel on the floor

single lick down dog 
where we ... [MASK]

alright shake out your 
arms and your legs if 

you need forth a

because the next one 
is slightly ...

weight on the legs and 
get more stretch in the 

calves in these 45 ...

going to pour these 
over top of ...

that i've melted these 
are just the wilton 

candy melts and i'm

... try it anyway what ...this is a lot of popcorn 
so i don't know how 
this is gonna work

this into a ... ...... so now what ...so that's mainly why i 
turned the burner off ...

[MASK] it quits
      popping i don't 

          want to burn this

... my kids i go oh 
that ...

just i feel like it's so i 
had kids when i was 20 
by the time i was 22 i 

had both

you always want to get 
a better relationship 

with your parents got it 
i

shaking your head like 
there's always room for 
improvement that i like 
even if you're at like the 

best

over [MASK] are youthat that's all i had 
control ...

i ate what i wore i kind 
of embraced ...

hadn't no control over 
but i knew that i could 
control how my room 

looked what

this time we’re holding it with the right leg 

*popcorn popping* and forth every now and then 

*exhausted laugh* why

Figure 5: Exploring MASKed audio self-supervision. Shown are example videos from our validation set, with predictions
from Reserve-B. During pretraining, our model progressively learns to pick up on audio-specific clues. It seems to
recognize physical dynamics of cooking popcorn, matching the first row to its MASKed audio. Likewise, it seems to use social
reasoning to match the second row to its audio. Both of these clues are orthogonal to subtitles provide.

heavy-tailed nature of both distributions. It is worse on
getting both right (‘action’), we suspect that this might
be due to priors (motifs) between noun and verb [127].
These are easy to learn given access to training data, but
we exclude these as we consider the zero-shot task.

iii.On LSMDC, our model obtains strong results at filling-
in-the-blank, likewise despite a heavy (unseen) frequency
bias. Notably, it outperforms CLIP significantly, with
CLIP often preferring templates that use visually-relevant
words, even if they don’t make sense as a whole.11

iv. Finally, our model performs well on MSR-VTT QA,
outperforming past work that directly rewords subtitled
instructional videos into video QA instances [122].

5. Qualitative Analysis: Why does audio help?
What can Reserve learn from both text and audio?

Three validation set examples are shown in Figure 5. The
model is given the displayed text and video frames, and must
match the MASK to the correct missing text and audio span (out
of 48k total in the batch). The plots show Reserve-B’s
probability of correctly identifying the correct audio or text
span, as it progresses through 10 epochs of pretraining.

Audio’s supervisory signal. In the first two rows of
Figure 5, audio provides orthogonal supervision to text:

1. The first row is from the recurring ‘popcorn’ example,
and the MASKed audio contains the distinctive sound of
popcorn pops slowing, as most kernels have already
finished. By the final epoch, Reserve-B selects this
specific auditory cue with 60% probability, over others

11For instance, on a picture of a smiling mailman ready to leave, CLIP
chooses ‘the mailman smiles off,’ versus ‘the mailman takes off.’

(including from adjacent frames, with different distinct
stages of popping). Here, sound provides signal for
learning joint vision-text understanding of the situation.
This cannot be captured by predicting the MASKed text
‘and forth every now and then,’ as evidenced by the lower
match-probability.

2. The second row contains only the text ‘why,’ with the
audio providing greatly more information — a female-
presenting speaker (shown in the next frame) laughs,
astonished that the child (in the frame afterwards) might
want a better relationship with their parents.

3. In the third row, matching performance is similar between
modalities, possibly as the yogi is narrating over a (muted)
video recording, and not adding much information.

Role of text. Text is still a crucial complement to audio, in
terms of the supervision it provides. Consider the second row:

Reserve-B learns to match the audio almost perfectly
(perhaps reasoning that the speaker is shown in the next frame,
and is laughing). In later epochs, its text-match probability
increases: knowing that a ‘why’ question is likely to be asked
is a valid social inference to make about this (tense) situation.

Learning through multimodal reentry. In this work,
we proposed a reentrant learning paradigm: predicting a
modality like audio given fused input from vision and text.
This paradigm contrasts with today’s standard practice of
learning primarily through language (either from language
alone, or from images paired with captions).

Indeed, we argue that learning from audio through reen-
try goes beyond offering orthogonal signal to models. Our
pretraining task forces Reserve to abstract away from
intramodal perceptual features (like pixels or tokens), to-
wards learning a more complete understanding of the world
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as viewed from the held-out modality. Developmental psy-
chologists have hypothesized that human children adopt such
a learning strategy, learning connections not just between
vision, language, and audio but also touch, smell, and taste
[35, 100]. Our work suggests it has potential for machines
as well.

6. Conclusion, Limitations, Broader Impact
We introduced Reserve, which learns representations

jointly through sound, language, and vision, guided through
a new pretraining objective. Our model performs well in both
finetuned and zero-shot settings, yet there are still limitations:
a. Our model only learns to reason over 40-second long

video chunks at once (8 ‘segments’).
b. Our setup learns only from videos with English ASR

subtitles. It would not work for the majority of the
world’s languages, where ASR systems today do worse.

c. Our model can only match, not generate, text and audio.
Still, we foresee several potential broader societal impacts

of our work. An expanded version of this technology might
someday serve as a component of assistive technology for
improved video captioning, e.g., to improve accessibility for
low vision and blind users [75] or for people who are d/Deaf
[47]. Yet, the same technology can have impacts that we
authors consider to be negative, including surveillance, or ap-
plications that hegemonize social biases that are widespread
on YouTube. We discuss these further in Appendix A: key
dimensions include respecting user privacy during dataset
collection, exploring biases in YouTube data, dual use, and
energy consumption. We discuss our plan to release our
model and data for research use so others can critically study
this approach to learning script knowledge.
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Abstract

We provide the following materials in the appendix:
• A full broader impact statement (Section A)
• Details about our model architecture (Section B)
• Details about how we provide video data into the model,
including how we align the modalities and perform the
masking (Section C

• Details about how we adapted our model to downstream
tasks (Section D)

• Details about how we collected data (Section E)
• Additional experiments (Section F)

A. Broader Impact Statement
In this paper, we have presented a model for learning

multimodal neural script knowledge, through incorporation
of audio as a first-class citizen alongside text and video frames.
We argue that academic study of this learning paradigm is
important, in part because it relates to how we as humans
understand the world. We as humans process situations by
perceiving through multiple modalities and interpreting the
result holistically.

At the same time, the work and methodology that we
outlined risks dual use. Like other large machine learning
systems pretrained on web data, our system may reproduce
harmful social biases present in its training data. While
a variety of past work has studied risks of language-only
pretraining [125, 14, 8, 60], the video-centric pretraining
that we explore in our work might have different benefits and
risks. We discuss these below, along with how we worked to
mitigate them through our work.

A.1. Privacy.

A significant risk with training on data at YouTube scale
is protecting user privacy. We took several proactive steps to
ensure this, that in turn build off prior work and community
norms [1, 83, 126]:

a. Weplan to release only video IDs for download, following
prior work [1, 83]. Thus, when a user deletes a video
off of YouTube, it becomes removed from YT-Temporal-
1B as well, giving content creators a right to opt out of
all uses of their videos.

b. Building off of past work [126], we directed our data
collection towards public andmonetized channels. These
channels are identifiable insofar as they contain more
subscribers, and more videos. They include companies
that have official accounts, including journalism outlets
like the New York Times and Vox. They also include
individuals for whom making public YouTube videos
is their full time job. In either case, our use videos in
question for research purposes can be seen as fair use.

Accuracy (%)
Model Voice Image+Voice Image

Reserve-L 10.8 9.6 10.7
CLIP ViT-B/16 [91] 86.0

Table 5: Zero-shot person (face/voice) recognition accuracy
on VoxCeleb2 [86] and VGGFace2 [17], using different
modalities. While Reserve can perform person recogni-
tion from several modalities, its performance is much lower
than the recognition-optimized CLIP model in the image-to-
name setting. We hypothesize that this is due to a similarity
between this setting and CLIP’s pretraining data – news
articles often include celebrity images, paired with their
names.

Framing of privacy. Privacy is a nuanced topic with
many societally, culturally, and generationally-specific in-
terpretations. We took inspiration from Marwick and Boyd
[82]’s framework of networked privacy, which posits that
users posting public videos might encode private information
– enough so that their intended viewership (friends, possibly)
can catch the gist, but not enough so as to leak private details
like phone numbers to the world.

Through the lens of networked privacy, we see key dif-
ferences between studying videos on a moderated platform,
versus NLP work that trains models from the open web (e.g.
[92, 16]). When YouTube users upload videos, they seem to
understand details of its privacy policy, beyond consenting
to it [64]. YouTubers typically upload their own videos
[102]. These details differ from text on the open web. Today,
‘data brokers’ post private details (like phone numbers) to
the web for profit [24]; concerningly, a study on language
models suggests that models are vulnerable at memorizing
this private information [18].

It is worth examining our research through other framings
of privacy as well. For example, internet platforms profit
off of user data, whereas users do not share equally in these
profits [37]. For this, and for the other reasons mentioned,
we aim to release our model only for research-based use.

A.1.1 Empirical study: can Reserve identify indi-
vidual celebrities?

Inspired by work studying language model memorization
of private information [18], we wish to empirically probe

Reserve’s ability to recognize individuals. Our goal
during model development was not to optimize for this
ability. Instead, our goal was to study models for multimodal
script knowledge (what people might be doing in a situation
over time, and why) instead of long-tailed visual recognition
(including who those individuals are). These goals might
trade off – for instance, our training data only has individuals’
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names when they are mentioned in ASR subtitles, a pairing
that might be significantly noisier than images and text on
the open web.

We study this capacity on the VoxCeleb2 and VGGFace2
datasets [86, 17], wherewe created a test set of 120 celebrities,
with 100 samples of each. We study these datasets not to
promote them, but to establish a conservative upper-bound
for the capacity of a model to recognize non-celebrities. We
hypothesize that if Reserve struggles to select the right
celebrity out of 120 predefined options, it would struggle
much more at identifying random people (where the set of
candidate names is much greater). We test this hypothesis
over three zero-shot settings:

1. Voice to name. Given an audio clip sampled for a
celebrity, we encode it with our model’s audio encoder.
We provide our model’s joint encoder the text ‘the sound
of MASK’, followed by the encoded audio. A blank image
is provided. We extract the representation on top of the
MASK, and choose the most similar celebrity name.

2. Image+voice to name. Here, we adopt the same format
as ‘Audio to name,’ except we additionally encode an
image of the celebrity’s face in question.

3. Image to name. Here, Reserve encodes an image
of the celebrity in question, and we provide it with text ‘A
picture of MASK.’ No audio is provided. Using our model’s
joint encoder, we select the closest encoded celebrity
name, out of all options.
We use this format to compare to a CLIP model, which
was trained on web images with captions [91]. For the
CLIP comparison, we use it to encode each image, and
for all considered celebrity names, the sentence ‘A picture
of ${name}’. We choose the closest encoded sentence to
the encoded image.

We show our results in Table 5. In all modes, our model
is less than 11% accurate at recognizing celebrities. Curi-
ously, the accuracy drops given both the image and the voice,
suggesting that the way we fused a celebrity’s image and
voice together might be outside the model’s training distribu-
tion. These results are significantly lower than CLIP’s 86%
accuracy at classifying a person from their image.

In Figure 6, we investigate more into which celebrities
our model is best at recognizing. Only a few celebrities are
reliably classified; these tend to be very famous celebrities
like Oprah Winfrey and Justin Bieber. Several sports players
are recognized well (including Lebron James and Roger
Federer), which could imply that our model learned their
identities from watching sports replays or commentary. Most
other celebrities are hardly recognized, whereas CLIP does
well across the board.

Results summary. Together, these results show that
while models like CLIP focus on encyclopedic knowledge
that results in strong zero-shot person recongition accuracy,
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Figure 6: VoxCeleb2 results per-celebrity, comparing
Reserve-L versus CLIP ViT-B/32 in the same ‘image-

text’ setting. Our model reliably recognizes A-list celebrities
like Oprah Winfrey, very famous musicians (Justin Bieber)
and sports players (LeBron James). However, it struggles
on every other celebrity, particularly compared with CLIP.
This suggests that our model primarily learns semantic as
opposed to recognition-level encyclopedic knowledge.
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Reserve is not as effective as other models in memoriz-
ing particular celebrities– and, thus, perhaps not as effective
as memorizing particular non-celebrities. These results sug-
gest that Reserve’s objectives and data might make it
less of a concern to release privacy-wise, versus models
trained on web images with captions.

As the rest of the paper emphasizes however, Reserve
performs well on tasks with temporal understanding and com-
monsense reasoning as the primary goal. On a broader level,
these results suggest that it is possible to learn strong models
about temporal reasoningwithout person-level memorization,
though more work is needed.

A.2. Biases in (pre)training data.

The ‘knowledge’ that our model learns should be viewed
as situated within YouTube [66], which has numerous biases
(that we will discuss next). Past work has made similar
observations for language model pretraining on the open
web[8]. One of the root causes of such bias is learning
objectives that encourage memorization of surface level
cooccurences, rather than truly causal factors [55, 9, 117].
Though it is possible that in the very long term, a paradigm
of grounded learning might resolve some of these issues, the
objectives in this work still likely reify biases that exist in the
YouTube data.

Platform biases. Unlike many other pretraining efforts,
that scrape data from the open internet (e.g. [92, 16, 91])
which directly leads to toxic biases (e.g. [41, 32, 11]); we
trained ourmodel onYouTube, which is amoderated platform
[101]. Though the content moderation might perhaps reduce
overtly ‘toxic’ content, social media platforms like YouTube
still contain harmful microagressions [15], and alt-lite to
alt-right content [94]. Additionally, it should be mentioned
that the content moderation on YouTube disproportionately
filters out minoritized voices [43]. Thus, despite us not
using any word-based ‘blocklist,’ our model’s pretraining
data is still biased [32]. Even without videos being explicitly
removed, the ‘YouTube algorithm’ incentivizes the produc-
tion of certain types of content over others [12, 102]; e.g.
people’s roles in YouTube videos tend to be highly gendered
[85], which might bias situation understanding [131].

Bias amplification. In this work, we pretrained a model
primarily on ASR text, which is itself produced by another
model. The automatic captions in YouTube are known
to suffer from gender bias [107], which our model (like
neural models generally) might in turn amplify [131]. The
transcriptions on YouTube are also likely poor at handling
important identity markers, like pronouns. Already, text-only
models like BERT struggle with pronouns like they/them
and zi/zir; our reliance on ASR text makes our corpus
likely worse in this regard [28]. While past work, namely
MERLOT [126], ‘cleaned’ this ASR text – through another
large language model – we opted not to do so for this work

due to computational expense. Though in that work, the
ASR-denoisification was found to boost performance in VCR,
it seems unlikely that it would solve this core issue of model
bias.

A.3. Dual use.

Learning connections between video, audio, and text –
though an important area of study as we have argued – can
be used for undesirable applications, beyond what we have
outlined under ‘biases.’ We outline and discuss a few below.

Generating fake content. A concern for pretrained
models is that they can generate fake content, that could
be used by ‘bad’ actors for their ends [125]. It should be
noted that our model cannot explicitly ‘generate’ text, audio,
or vision in a direct sense. Nonetheless, however, it is
possible that a finetuned or expanded version of this model
could be used for that purpose – and that our model would
be more helpful to such an actor versus them training their
own (perhaps larger) model from scratch.

Surveillance. Our model might contain representations
that enable it to be used in surveillance applications. As
we note in Appendix A.1.1, our model’s low performance
on person recognition suggests that it might perform poorly
recognition-focused applications. Still, one possibility is that
a neural script knowledge could ‘summarize’ surveillance
videos in some form (like identifying an activity of interest),
without identifying the person(s).

We suspect (but cannot definitively prove) that the report-
ing bias of the YouTube data that it was trained onmight make
it poor for such a surveillance-focused task [49]. Namely,
most surveillance videos are sparse in nature – finding an
activity of interest is like finding a ‘needle in a haystack’
[90]. Though, some surveillance videos are inevitably posted
on YouTube and then captioned, these disproportionately
contain interesting events (like somebody’s car crashing into
a house). It is not clear whether our system could be eas-
ily adapted to such a sparse problem; the amount of work
required suggests that it might be out-of-scope at least for
low-skill actors. On the other hand, this broad research
agenda, and perhaps all of computer vision for that matter,
might enable large actors to do just that [132]; which might
not be addressable through purely technical solutions [51].

Harmful outcomes if deployed. Beyond the biases that
our system possesses, some applications of our system – if
deployed in production – could cause harm, particularly to
groups already harmed by AI systems. Of note, linking
someone’s voice with their appearance is not always a good
thing [93]. Likely some of the key features that our model
learns – though we did not teach it this explicitly – involve rec-
ognizing gender, and this is harmful especially to transgender
individuals [54].
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A.4. Energy consumption.

Our model cost a lot amount of energy to pretrain [103];
roughly 3 weeks of time on a TPU v3-512. The total carbon
footprint of our work was a net 8.23 tons of CO2 equivalent,
which is roughly 4.5% of the emissions of a jet plane flying
round-trip from San Francisco to New York.12

At the same time, it is possible that our model could
save energy overall, when shared with researchers who build
off of our system. Indeed, Reserve-B uses less energy
than MERLOT [126] (due to a smaller vision backbone, and
smaller image sizes), MERLOT in turn is more efficient than
past work which used expensive detector-based backbones
(e.g. [106, 20, 129]), that are made more expensive because
some of their computational primitives (like non-maximum
suppression) are difficult to make efficient on-device.

A.5. Synthesis.

With these risks in mind, we release our video IDs, as well
as Reserve’s checkpoints, exclusively for research use.
We believe that at this point in time, we as a field lack full
knowledge of the privacy, bias, and dual-use risks of video-
based models – though, we hope that our analysis in this
section provides a good starting point. For instance, while
the objectives that we have studied were designed to promote
learning general neural script knowledge above encyclopedic
memorization, they have not yet been tested in all possible
cases. By opening our models to the research community,
we hope to promote fundamental work in uncovering both
promising aspects of these systems, alongside examining
their risks. We hope to contribute to these lines of research
as well.

B. Model implementation details
In this section, we discuss at a more in-depth, technical

level, how we implement certain aspects of Reserve,
and other details (like its runtime in FLOPs).

B.1. Rotary position encoding

As mentioned in the main text, we use a rotary position
encoding to model the relative location of input sequences
[104, 10]. We chose this primarily because we did not want
to use absolute (additive) position embeddings, which would
have to be added to the inputs of each encoder, and possibly

12CO2 Calculation. It is also important to consider the location where
these TPUs are located, as the renewables portion at each datacenter is
not equal [87]. Our TPUs were in the ‘europe-west4’ region, which uses
on average 60% carbon-free energy, and a Grid Carbon intensity of 0.410
kgCO2eq / kWh. A single TPU v3 processor (with 8 cores over 2 chips)
has a power average of 283 W, so after performing the math from [87], our
training cost 20,000 kWh. This gives us a net 8.23 tons of CO2 equivalent.
It should be mentioned that this figure only covers the electricity usage given
the chips (and the datacenter), not the raw materials involved in making
these chips (which is significant [111]).

at multiple levels in the hierarchy (e.g. for the joint encoder,
the video segment index t would be needed as well).

The rotary encoding uses no parameters, and instead uses
a kernel trick to allow the model to recover relative distances
between key and query elements in a Transformer’s attention
head. This can be seen as ‘rotating’ pairs of elements; we
apply the rotation to only the first half of each 64-dimensional
head, and the second half is kept as is.

Multidimensional coordinates. We treat each token as
having a 4-dimensional position of (h,w, `, t), corresponding
to the h,w coordinates in the image, the position ` in the
text-sequence, and the segment index t. If a dimension
is irrelevant to a modality (like h,w for text), we set it to
0. Thus, for our various encoders, we use the following
coordinate schemes:

a. Video Frame Encoder (ViT): just the h,w coordinates
of the image; so (h,w, 0, 0).

b. Audio Encoder: Only the 1-D position ` of the patch in
the spectrogram: (0, 0, `, 0).

c. Text Span Encoder: Only the 1-D position ` of the token
in the input: (0, 0, `, 0).

d. Joint encoder: Here, we use all coordinates. Inputs from
the video frame encoder have coordinates (h,w, 0, t),
where t is their segment index. The text and (pooled)
audio inputs are merged, and they each have coordinates
(0, 0, `, t), where ` here is the absolute position in the
entire sequence (across segments).

As part of our implementation, we normalize the rotary
coordinates. h,w are scaled to be in the range [−1/2, 1/2],
such that text is implicitly ‘in the center’ of the image.
Likewise, ` and t are scaled to be in the range of [0, 1]. The
positions are used to compute relative distances, by using a
kernel trick to rotate coordinates in the keys and values of
each dh-sized Transformer attention head.

B.2. Sequence lengths

We briefly remark on the sequence lengths used by parts
of the model.

a. Video Frame Encoder (ViT): Most YouTube videos are
widescreen (16x9). We thus used a widescreen resolution
for our video frame encoder. It takes in patches of size
16x16, and we used a layout of 12 patches (in height)
by 20 patches (in width). This corresponds to 192x320.
Among other factors that are important are ensuring that
TPUs do not execessively pad the sequence length [128].
The sequence length is 241 in this case, as there is a
CLS token, and it gets padded to 256.
As we note in the main text, afterwards we apply attention
pooling in a 2x2 grid (ignoring the CLS token here), which
gives us aH/32 byW/32 grid for the joint encoder (6 x
10).
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b. Audio Encoder. Our model indepenedntly encodes each
1.6 second of audio. We do this through spectrograms.
Each window involves 1536 samples at a sample rate of
22500 Hz, and there are 588 samples ‘hops’ between win-
dows. We chose these hyperparameters largely around
efficiency. We found that the Discrete Fourier Transform
is fastest if the window size is close to a multiple of
2. We used a small number of mel spectrogram bins
(64) because we found that at that threshold, we could
reconstruct the original sequence at an acceptable level
using the Griffin-Lim algorithm, [52] which itself might
be a lower bound on quality as neural methods trained
for this purpose have been shown to do better [115].
In our implementation, we compute the spectrogram for
an entire video segment (5 seconds) at once; this is of
size 64 mel bins by 192 windows. During pretraining,
we perform what is effectively a ‘random crop’ over
the spectrogram: we extract three sequential 64x60 sub-
spectrograms, for each audio subsegment. We constrain
them to not overlap, which means that 12 (random)
windows are held out.
We note that our Audio Encoder AST is quite different
from the one proposed by [46]. Though it operates
over spectrograms, we opted for a linear ‘1-dimensional’
layout rather than a two-dimensional (image-like) one.
We also did not pretrain our audio encoder on any su-
pervised data (they used ImageNet and found, perhaps
surprisingly, that it helped initialize the model). We used
a patch size of 64 mel bins by 2 windows; the resulting
(1D) sequence is of size 30. After adding a CLS token,
the result is a sequence of length 31.
As we note in the main text, we apply attention pooling
afterwards (for all elements except the CLS token), pooling
by a factor of five to resize the length-30 sequence to a
length of 6 ‘audio tokens.’

c. Text Span Encoder: We operate on spans that are at most
of length 15, with an additional CLS token. Its length is
thus 16.

d. Joint encoder. LetL be the number of text or pooled audio
tokens given to the model per segment, on average; we set
L=20. LetT be the number of video segments. Then, the
joint model’s sequence length is T×(L+W/32×H/32).
Our total sequence length was thus 640.

To better adapt our model to downstream tasks – partic-
ularly single-image tasks like VCR [124], where past work
tends to use a resolution much higher than 192x320, after
pretraining, we performed FixRes pretraining (for one epoch
on Reserve-B, and one half epoch on Reserve-L
[108].13 Here, we trained the model on larger images – si-
multaneously on 288x512 widescreen images (18 patches

13We had intended to do a full epoch for Reserve-L, but our job got
preempted, and the loss seemed to have already converged.

GFlops, from VCR

Model Image
Encoder

Joint
Encoder Total Q→AR

Acc(%)
UNITER-Base[20] 1766 28 1794 58.2
UNITER-Large[20] 1767 99 1867 62.8

MERLOT [126] 236 67 303 65.1

Reserve-B 99 46 146 62.6
Reserve-L 176 165 341 71.5

Table 6: Efficiency metrics of our model versus others,
measured in terms of (giga) floating point operations required
to process a single image, question, and answer candidate
on VCR. We compare with the overall VCR performance on
the combined Q→AR metric. Our Reserve family of
models are significantly more efficient than prior work, with

Reserve-L being roughly on par with MERLOT [126]
in terms of FLOPs, yet improving accuracy by over 6%.

by 32 patches), and on 384x384 square images (24 patches
on each side). The joint encoder, correspondingly, uses a
sequence length of 1312.

During 10 epochs of pretraining, we used a cosine decay
of the learning rate down to 0.02 its maximum. During
FixRes pretraining afterwards, we warmed up the learning
rate to 0.02x its peak, over the first 1/5th of an epoch, and
afterwards used a cosine schedule to anneal it towards 0.

B.3. Efficiency metrics of our model

In Table 6, we report efficiency metrics of Reserve,
versus others. We calculate these metrics in the context of
scoring a single VCR question and answer candidate. This
requires encoding one image, and using 128 tokens for each
question and answer combined (for all models). We compare
against a UNITER [20], which is a representative Visual-
BERT style model, along with MERLOT [126]. Our models
are far more efficient in terms of FLOPs, with Reserve-L
being roughly on par with MERLOT, yet outperforming it by
6% in terms of VCR accuracy. We discuss key differences
below:

a. UNITER. We note that UNITER, like other VisualBERT
models, uses a supervised object detection backbone [5].
This processes images using a ResNet 101 model [56],
at a resolution of 600x800; the final ResNet ‘C4’ block
is applied densely over the entire image to obtain object-
detection potentials everywhere in the image. Both
factors greatly increase the FLOPs count.
When computing UNITER’s FLOPs count, we exclude
operations like non-max suppression, which is an opera-
tion that is difficult to implement (and thus whose FLOP
count might vary significantly depending on implemen-
tation). Our FLOPs count is thus a lower-bound. 36
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detection regions are extracted, which is why the ‘joint
encoder’ for UNITER is smaller than the equivalents for
MERLOT and Reserve.

b. MERLOT. This model has two key differences versus
our Reserve. First, it uses a larger image resolution
for VCR: 384x704, versus our 288x512. Second, it uses
a hybrid ViT-ResNet50 backbone for encoding images.
The backbone here is lighter weight than the object
detection backbone of UNITER (in particular, the final
‘C4’ block is removed), and thus, as shown in Table 6,
though it usesmore FLOPs than does our Reserve-L,
it uses far fewer FLOPs than UNITER.

We choose flops as our primary comparison metric as
past work shows that it is one of the key factors in model
scaling [65, 34]. Parameters are arguably more fungible.
For instance, in text-only representation learning, ALBERT
[71] demonstrates that it is possible to tie parameters together
at all layers of a BERT-like transformer, reducing parameters
by an order of magnitude (while not modifying compute),
with a minimal performance drop. We did not do this for
this work, as we wanted to use a more ‘vanilla’ Transformer
architecture; however, it suggests that representation learning
models with hundreds of millions of parameters might be
FLOPs bound as opposed to parameter-bound.

Nonetheless, UNITER-Base has 154 million parameters,
though some are frozen (86 million from their Transformer,
23 million from the word embedding layer, and then 44
million from their object detector [5]). UNITER-Large
has 378 million parameters (303 from their Transformer, 31
million fromword embeddings, and 44million from the same
object detector. Meanwhile, MERLOT has 223M parameters.
Versus our Reserve-B, 14 million extra parameters are
due to a larger vocabulary, and 10 million parameters are
due to a ResNet50 encoder – but these parameters have a
disproportionate impact in FLOPs count.

B.4. Full model hyperparameters

In Table 7, we present full hyperparameters for our model.
Among other details, we used AdamW as our optimizer, with
β2 = 0.98 and ε = 1e− 6. We increased the learning rate
linearly to its peak value (4e-4 for Reserve-B, 3e-4 for

Reserve-L) over 3750 steps ( 1
20 th of an epoch). Our

number of warmup steps is lower than many other pretraining
work; we note that all of our contrastive objectives involve
learning a σ parameter, which functions as a secondary
‘warmup.’

We did not use gradient clipping. We trained and evaluated
in 16-bit bfloat16 precision wherever we could – casting all
gradients to that precision as well, and saving the AdamW
running mean and variance to be 16-bit as well. A few
times during pretraining Reserve-L, we found that some
values in gradients would be NaN. We addressed this by
always setting NaN values to be 0. This seemed to address

Base Large

A
ud

io
siz

e

Sample rate 22050 Hz
FFT hop length 588 samples
FFT window size 1536
Mel bins 64
Subsegment length 60 hops, (≈1.6 sec)
Patch size 64 mels × 2hops
Pooling ratio 5

Final size 6 tokens

Im
ag
e

ViT patch size 16
Pretraining size 192 × 320
Res-adaptation size 288×512 and 384×384
Pooling window 2 × 2

Te
xt Max. span length 15

Mean span length 5.5

Jo
in
ts
iz
es

N video segments 16
video segment groups 2 (each with 8 segments)
Pretraining seq. length 640 (160 text&pooled audio;

480 pooled vision)
Res-adapted seq. length 1312 (160 text&pooled

audio; 1152 pooled vision)

Ba
tc
h
siz

es

Videos 1024
# Frames (for matching) 16384
Masking rate 25% (of subsegments)
Text spans 49152
Audio spans 49152

ar
ch
ite

ct
ur
e

Hidden size 768 1024
Num attention heads 12 16
Size per head 64
Rotary size (per head) 32
Vision num layers 12 24
Audio num layers 12
Text-span num layers 4
Joint num layers 12 24

op
tim

iz
er

Peak learning rate 4e-4 3e-4
Weight decay 0.1
AdamW β2 0.98
AdamW ε 1e-6
Warmup steps 3750
Training steps 750k (+ 75k for res.

adaptation)
Training epochs 10 (+ 1 for res. adaptation)

σ Maximum scale 100.0

Pretraining compute TPU v3-512
for 16 days

TPU v3-512
for 5 days

Table 7: Architecture details, and pretraining hyperparame-
ters, for both model sizes.

20



Base Large

VC
R

Batch Size 32
Training Epochs 5
Image Size 288×512
Learning Rates Tried 1e-5, 2e-5, 3e-5 8e-6, 1e-5, 1.2e-5
Learning Rate 2e-5 8e-6

TV
Q
A

Batch Size 32
Training Epochs 3
Image Size 288×512
Learning Rates Tried 5e-6, 1e-5 5e-6, 1e-5
Learning Rate 5e-6

Table 8: Hyperparameters for finetuning on downstream
tasks.

the symptoms of training instability – though sometimes the
training loss would spike to roughly around the same loss as
random initialization, it always converged back to slightly
better than it was before the spike. We are not currently sure
why this happens.

B.5. Speed improvements during pretraining

We made several high-level algorithmic and engineer-
ing implementations to our implementation, which made
pretraining run faster, and that we discuss here.

Duplicated video copies. As mentioned in the main text,
we create two copies per each video – allowing us to learn
separately how to handle audio as an input as well as how
to learn from audio. We chose this in part because copying
a video does not increase the total compute requried by a
factor of two. Instead:

1. We encode the underlying video frames and audio clips
only once (for the two video copies), and then duplicate
the encodings; this is far more efficient than encoding
them both separately from scratch.

2. For the two video copies, we sampled two disjoint sets
of masks (for which audio and text subsegments are
replaced with MASK) at a 25% rate. This increases the
pool of negative samples for contrastive learning, again
increasing training efficiency.

Reducing memory usage. The memory usage of our
Transformer implementation scales quadratically with se-
quence length, which could pose a problem since we operate
on sequences of videos. We split the video into two groups
of 8 segments, and encode these each group separately by
the joint encoder.

Vectorization. We vectorize all joint transformer inputs
together into a single call. During this vectorization, we
also encode the transcript (for the transcript-frame matching
objective).

We note that this vectorization is incompatible with the
Mask LM variant proposed by MERLOT [126]. In this
variant, which the authors called ‘attention masking,’ two
transformer calls must happen sequentially – first, a language
only encoder must encode the inputs and mark down (what
is presumably) visually-grounded tokens; second, these to-
kens are masked for the joint encoder. We found that such
an objective was unnecessary when pretraining under our
contrastive learning approach, which in turn enabled more
efficient pretraining.

We discuss the exact pretraining data formatting technique
that we used in the next section.

C. Pretraining Data Formatting: alignment
and masking

In this section, we discuss how we turn a video V into a
(masked) list of segments {st} for pretraining.

Recall that each segment contains a video frame vt, ASR
tokenswt, and audio at. We generate the list of segments by
iterating through the video with a 5-second sliding window.14

Audio and text subsegments for masking. We want
audio to be used in part as a target for contrastive prediction.
However, during early exploration we found that 5 seconds
of audio could correspond to many BPE tokens; roughly
15 on average. We use past work in language modeling
as a guide [63, 92] and wanted an average span length of
around 5 tokens. To get this, we split each audio segment
into three equal subsegments, each with a duration of 1.66
seconds. We can then perform masked language modeling
at the aligned subsegment level, where we mask out the text
corresponding to an audio subsegment, and have the model
(contrastively) predict the masked-out span of text, as well
as the corresponding span of audio. We use a masking rate
of 25%, which means that a quarter of the subsegments will
be corrupted and replaced by a MASK token.

In theory, splitting the videos into (masked) segments
ought to be straightforward. However, the key challenge that
we ran into is that the YouTube caption timing information
is unreliable. Problems might arise when we perform
pretraining with both audio and text, on misaligned data.
Suppose the model is given audio in segment st−1 that ends
with somebody saying the word ‘pasta.’ If the alignment
between audio and text is off, the model might be able to
cheat the desired task by simply predicting the word ‘pasta’
for segment st – thereby turning the challenging masked-
prediction task into an easier speech recognition task; we
discuss this in more detail in Appendix C.1.

14Sometimes there are long ‘pauses’ in videos where nothing gets said.
When this happens – if two segments in a row have fewer than 8 BPE tokens
– we merge them 90% of the time, in effect ‘fast-forwarding’ the audio and
still extracting a frame from the middle. We do this at most twice, so the
total length is at most 15 seconds here (in effect, a ‘playback’ rate of 1x, 2x,
or 3x). In roughly 90% of cases, the segments are 5 seconds of length.
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One way of addressing the timing issue would be to run
our own ASR model over all videos, but we chose not to
do this due to computational expense. Instead, we adopted
two complementary strategies. First, we trained a lighweight
regressor to refine the timing information (C.2); second, we
mask audio and text conservatively, to minimize alignment
errors (C.3). Finally, we discuss how we combine everything
efficiently (in a vectorized way) in C.4.

C.1. YouTube Caption Timings

YouTube provides automatically generated captions for
accessibility purposes, which include timing information on
each word. In the subtitle encoding that we used (vtt), each
word w contains a single timestamp t which corresponds
to when the word should flash on-screen. The timings are
mostly accurate, but we found two key issues:

a. First, they show up on average roughly 0.1 seconds
before each word is spoken, which we suspect might be
for usability purposes (perhaps so that while the viewer
is reading the caption, they hear the word).

b. Second, with a single timestamp t for each word, it is
difficult to infer about pauses. For each word w, we
can use its timestamp t, and the timestamps of adjacent
words, to loosely infer an interval [t′s, t′e] around when
the word is said. However, the interval is not tight. We
can only infer that the word is being actively spoken for
some subinterval [ts, te] such that t′s ≤ ts ≤ te ≤ t′e.15
This can lead to high absolute error (in terms of a
difference between timesteps), when pauses occur. For
example, suppose a speaker says a word, and then pauses.
The interval given by the subtitles, [t′s, t′e], might be
rather large (possibly a few seconds), even though the
actual word was spoken for a fraction of that time.

C.2. Refining timing information

We trained a simple multilayer perceptron regressor to
correct the timing information of YouTube transcripts. For
data, we used 2000 videoswith transcripts fromYT-Temporal-
180M, and also used Google Cloud’s (highest quality, paid)
ASR service to transcribe them. After aligning the words
for these transcripts, this gave us tuples of the YouTube
ASR word w, its provided interval [t′s, t′e], and the ‘ground
truth’ interval [ts, te].16 Our modeling objective was then
to predict the desired offsets with respect to the provided
interval: δs = ts − t′s and δe = te − t′e. We took a feature
based approach.

15Note that this is compounded with the first problem, the ground truth
interval [ts, te]might not be fully contained in the provided interval [t′s, t′e]
due to ‘captions being shown before audio’, the error here is typically small
though (0.1 seconds).

16When matching YouTube ASR to Google Cloud’s ASR, we skipped
words without an ’exact-match’ alignment, as well as words that were over
0.25 seconds apart (i.e., where either δs > 0.25 or δe > 0.25

For each input (w, t′s, t′e), we used as features:
i. the length of w in characters,
ii. the length of w in BPE tokens,
iii. whether w is uppercase or not,
iv. the number of vowels in w,
v. the number of punctuation characters in w,
vi. the value of t′e − t′s.
We provided these features as input to the model, as well as
the corresponding features for the next word, and the previous
word. We z-normalized all features and used a two-layer
multilayer perceptron, with a hidden size of 32 and RELU
activations. We used a tanh activation at the end to bound
the regression. The final predictions for δs (analogously for
δe) were then given by the following equation:

δs = c tanh(w · h+ b1) + b2 (3)

where h is the hidden state, and with learnable parameters c,
w, b1, and b2. The learned bounds mean that, no matter what
the input, the model will never predict an offset of above
c+ b2 (of which it learned for both parameters c ≈ 0.2 and
b2 ≈ 0.11, so the offsets can never be above 0.3 seconds).
We trained our lightweight regression model using an L1

loss, and used it to correct the timing on all of the transcripts.

C.3. Handling worst-case scenarios in masking,
when alignment isn’t perfect

The regressor that we described reduces the average
timing error of a transcript, as a preprocessing step, but it is
not perfect. Thankfully, however, we find that most of the
remaining alignment errors are single words that are slightly
misaligned. For instance, for three words wt, wt+1, wt+2,
the audio corresponding to the time interval around wt might
contain sound from wt+1 being spoken, but rarely wt+2. We
suspect this is primarily due to the difficulty inferring pauses:
by definition, no other word can be said in a pause, so the
errors are local.

We present a high level approach for masking audio and
text, that in turn addresses these alignment issues (making it
difficult for models to cheat). A diagram is in Figure 7.

Recall that in our framework, we only either go from
‘vision and text→ text and audio’ (VT→TA), or, ‘vision, text,
and audio→ text’ (VTA→T). One of the reasons we did this
is to avoid allowing a model to cheat by performing speaker
identification (or even ‘microphone identification’), which
might be feasible if audio was given to the joint model as
input. We can handle the two cases separately:

a. Vision and text→ text and audio (VT→TA). Here, the
text as input (to the joint encoder) might overlap with the
audio we are trying to predict. Our solution here is thus
to donate nearby tokens from the predicted span, to the
input. Let the span that we are trying to predict (and that
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Figure 7: An overview of our masking strategy for dealing with sequences of video frames, ASR, and audio. We have noisy
timing information for each word, so we can align the ASR text with audio spans of 1.6 seconds each, using three sub-segments
of audio and text for each video frame. However, there exist alignment errors between the ASR and audio sub-segments –
certain words (and sub-words) have phonemes that are are in the wrong segment (like ‘back’ in w1,1 is only partially said in
the first sub-segment; the ‘k’ sound is said in the second. When audio is only a target, we address these by ‘donating’ tokens to
predicted spans. When audio is only provided as input, we address this by sandwiching ‘mask’ tokens between text input (so
alignment does not ‘bleed’ over).

we will ‘mask out’) have a start time of ts and an ending
time of te. If the final token in the previous text span, if
any, has a timestamp of greater than ts−0.125, we move
it to the predicted span; likewise, if the first token in the
next text span has a timestamp of less than te+0.125, we
move it to the predicted span as well.

b. Vision, text, and audio → text (VTA→T). In this pre-
diction task, models are given information from all
modalities as input, and must predict masked-out text
spans. Note that models are only given a single ‘speech’
modality – either text, or audio – at each timestep. What
this means is that we can carefully choose which in-
put subsegments to turn into ‘audio subsegments,’ and
which to turn into ‘text subsegments.’ Our strategy is,
given a masked out subsegment, to turn 80% of adjacent
subsegments into ‘text subsegments.’
We give an illustration of this in Figure 7, part 2. Here
the word ‘focus’ is part of a4,1 but also w3,3). This

might make w3,3) overly easy to predict, if we gave the
model a4,1 as input. Our solution is thus to give the
model text from w3,2) and from w4,1) as input; we are
guaranteed that there is no misalignment overlap here
between input and prediction spans. All of the other
subsegments (not adjacent to one of the 25% that we
mask out) will be provided as audio.

C.4. Putting it all together, along with web text

Finally, we discuss how we combine the various masking
approaches into the prediction tasks outlined in the main text.

Each video has N = 16 video segments, and three sub-
segments of audio or text spans per segment. We consider
two sub-problems for this video sequence:
i. in VT→TA, vision and text are provided as input, and the

model must predict masked-out text and audio. These
are done on top of separately-encoded MASK tokens and
MASKAUDIO tokens, to enable the model to learn different
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predictions for each modality over two separate trans-
former ‘columns.’

ii. In VTA→T, vision, text and audio are provided as input, and
models must predict masked-out text. Here, we use the
term ‘predict’ as a shorthand for our contrastive objective –
in which a model must match a context (a jointly-encoded
MASK) to the exact missing span in question, where many
negative contexts and spans are provided.
We use a masking rate of 25% for audio and text sub-

segments, and there are 3 subsegments per segment. This
means that a single video instance gives us 48 × 0.25=12
masked-out spans of text, for each of VT→TA and VTA→T,
so 24 in total (as we use disjoint masked-out subsegments).
Likewise, it gives us 12 masked-out spans of audio. If we
scaled these to the whole batch of 1024 videos, we would
have 12k audio span options and 24k text span options. This
might suffice, but scaling up the pool of candidates boosts
performance in a contrastive setting, as suggested from prior
work (e.g. [91]), and as our ablations (Table 1) support as
well. Thus, we do the following:

a. Text candidates. We scale up the text candidates by
simultaneously training the model on web text, from
The Pile [40]. The joint encoder – which can handle
pooled video, pooled audio, and BPE-encoded text – is
simultaneously given a sequence of web text, for each
video that we have. By performing the span-contrastive
objective with this piece of web text as well, we can
not only teach the model about written (as opposed to
spoken) language, but we can scale up the set of text
candidates as well.
Let eachweb-text sequence be of lengthL. Wefirst divide
it into fake regions that ‘look like’ the text subsegments
in length. We do this by calculating the empirical length
distribution of the text subsegments, and then using
this (categorical) distribution to sample a sequence of
sub-segment lengths `1, . . . , `K .17 We clip the sampled
sequence, such that

∑
i `i = L.

Next, we mask the fake subsegments. During pretraining,
we use text sequences of length L = 800, but a model
sequence length of only 640. Because we are masking
spans and not individual tokens, the text sequences
‘shrink’ when we mask them. We extract exactly 38
masked-out spans, which corresponds to around 25% of
total text.
Finally, we combine the target spans that we took from
the webtext sequence, with the target spans from the
video. We note that sometimes – especially in a video –
text spans might be empty. Not every 1.6 second slice
of a video has someone speaking. We thus try to not

17The empirical distribution for each length, in order from a length of
1 to 15, is [0.03, 0.05, 0.08, 0.11, 0.13, 0.13, 0.12, 0.10, 0.07, 0.05, 0.03,
0.02, 0.01, 0.006, 0.003].

use these empty spans in our contrastive objective. For
each video (which is paired with text for implementation
reasons) we select the ‘best’ 48 text spans out of the
(38+24) options – penalizing empty spans, and choosing
spans from videos 4x as often.
These ‘best 48’ text spans, as well as the pooled contexts
that they were paired with, will be used in the contrastive
objective. Aggregating over the entire batch of 1024
videos (and 1024web text sequences), this gives us 49152
text spans as candidates, for the all-pairs symmetric
softmax between text spans and contexts.

b. Audio candidates. For each video, we note that we have
exactly 12 pooled MASKAUDIO tokens, where the model
is trying to predict the corresponding audio span. One
option would be be to just use those 12 corresponding
audio spans as the targets, aggregate these over the batch,
and do a symmetric-cross-entropy loss.
However, we can do even better for free. Note that for the
VTA→T direction, we might have to encode many of the
audio spans anyways, using the lower level audio encoder
(which simultaneously extracts a CLS representation and
a sequence-level pooled representation). To simplify
implementation, we encode all 48 audio spans per video.
We can use these audio spans as candidates.
Thus, we do the following when computing the loss over
audio prediction. We aggregate all 12288 contexts from
the MASKAUDIO tokens in the batch, and we aggregate all
49152 candidate audio spans. We perform an all-pairs
dot product between these two sets, and use it to compute
a symmetric cross-entropy loss over both directions. We
did not encounter any trouble using the same temperature
for both directions (even though for one direction, there
are 12288 options, and for the other, there are 49152).

The combination of these design decisions provide more
‘hard negatives’ for the model during training. We also found
that they worked well to reduce wasted computation on a
TPU. For each video, the joint transformer uses one L = 640
length sequence for transcript-frame matching, two length-L
sequences for the VT→TA direction (as we break it up into
two groups of 8 frames each), two length L sequences for
the VTA→T direction, and finally one length-L sequence of
text. These sequences can all be vectorized together, and the
total batch size is 6× the number of videos. This is helpful
because using an even-numbered batch size reduces wasted
computation on a TPU.

D. Downstream Task Implementation Details

In this section, we present information for how we adapted
Reserve on downstream tasks.
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D.1. Setup for finetuned Tasks

For adapting Reserve in a finetuned setting, we take
the following approach. We always trained the model for
either 3 or 5, depending on the dataset size. We always used
a batch size of 32. We use a linear warmup of the learning
rate over the first half of the first epoch, with a linear decay
thereafter to 0. To find the learning rate, we did a small grid
search generally centered around 1e-5; details in Table 7.

When finetuning (and pretraining), we did not use any
dropout to make implementation simpler. Instead, as a way
to apply regularization, we used the same L2 penalty as in
pretraining (a weight decay of 0.1), but with respect to the
pretrained weights. This idea was used in [118] among other
works, and although it often tends to underperform dropout
[72], it is simple to implement. We also randomly resized
images (or video frames) to between 100% and 110% of the
network’s size. We suspect that additional work in applying
other regularization techniques (e.g. AutoAugment [25])
could improve our results.

D.1.1 Visual Commonsense Reasoning

We randomly flip images left or right, so long as there is no
instance of the word ‘left’ or ‘right’ in the question, answer,
or rationale candidates.

We also followed past work in ‘drawing on’ the provided
detection tags to the image [126]. These are unambiguous
references to entities that are then referred to in the question,
answer, and rationale. For example, text might reference a
‘person1’, which corresponds to an image region. When
drawing on these detection tags, we do so in a deterministic
way – for example, ‘person1’ always gets the same box
color. We determine the box color by hashing the object’s
ID (in this case, ‘person1’) and using that to determine the
hue. The model learns the connection between boxes with
different hues, and the names, during finetuning.

D.1.2 TVQA

TVQA provides models with a video, a question, and five
answer candidates; we represent this as five distinct sequences
for the model to score (one per candidate). The version of
TVQA that we used also gives models annotations for the
time region in the video that is being referenced. It is
not clear that only using this region would provide enough
context to be able to understand what is going on – enough
to answer correctly. Thus, for each question, we extract
35 seconds of video around the provided time region. We
then provided the model with two numbers corresponding
to the time region, relative to the cropped time interval. For
example, if the provided timestamp annotation is [t0, t1], we

use the following region:

tc =
(t0 + t1)

2
(4)

ts = tc − 17.5 (5)
te = tc + 17.5 (6)

The location of [t0, t1] in relative coordinates is then:

tr0 =
t0 − ts
te − ts

(7)

tr1 =
t1 − ts
te − ts

(8)

We provide models with tr0 and tr1, multiplied by 100 and
casted to an integer. Thus, an example TVQA instance might
look like:
1 to 28 What is Janice Holding on to after

Chandler sends Joey to his room? Chandler’s tie.

MASK[subtitles or audio]
This text input corresponds to the first ‘segment’ of a

video; to it we append subtitles (or audio representations)
from seven segments from the provided TVQA video (with
accompanying frames).

D.2. Setup and prompting for Zero-shot tasks

Here, we discuss how we set up various tasks for
Reserve in a fully zero-shot setting. In addition to

evaluating Reserve, we also evaluate CLIP [91] in the
same zero-shot setting. CLIP is not pretrained on videos,
and it cannot jointly encode text. For each task, we construct
CLIP’s label space by taking our prompt and substituting in
each possible answer option. We average together the logits
over all frames, and take a softmax, giving us a distribution
over the task-specific label space.

D.2.1 Zero-shotActionAnticipation onEPIC-Kitchens

We study the task of action anticipation from the EPIC-
Kitchens dataset [26], a large egocentric video dataset with
700 unscripted and untrimmed videos of cooking activities.
In action anticipation, a model must predict a future action
that comes τa seconds after a given video clip. The observed
segments are of arbitrary length; we follow prior work [26]
and set τa = 1.

The model tries to choose the correct noun and verb that
happens next, given a list of predefined options for each. We
report results on each category using the class-mean top-5
recall.

Zero-shot inference approach. We directly evaluate
the pretrained Reserve on action anticipation to verify
the knowledge learned during pre-training. All prior work
reported on the official leaderboard use supervision from the
in-domain training set, which we do not use at all [45, 38].
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Overall Unseen Kitchen Tail Classes

Model Verb Noun Act Verb Noun Act Verb Noun Act

Va
lid

at
io
n

RULSTM [38] 27.8 30.8 14.0 28.8 27.2 14.2 19.8 22.0 11.1
AVT+ (TSN) [45] 25.5 31.8 14.8 25.5 23.6 11.5 18.5 25.8 12.6
AVT+ [45] 28.2 32.0 15.9 19.5 23.9 11.9 21.1 25.8 14.1

Chance 6.4 2.0 0.2 14.4 2.9 0.5 1.6 0.2 0.1
CLIP (VIT-B/16) [91] 13.3 14.5 2.0 12.3 8.4 2.1 14.3 14.3 1.7
CLIP (RN50x16) [91] 16.5 12.8 2.2 13.4 7.0 1.2 17.1 12.6 2.5

Reserve-B 17.9 15.6 2.7 11.0 15.7 4.4 18.0 12.7 2.0
Reserve-L 15.6 19.3 4.5 14.1 18.4 3.4 14.7 18.5 4.4
Reserve-B (+audio) 20.9 17.5 3.7 15.5 20.1 4.3 20.7 14.5 3.2
Reserve-L (+audio) 23.2 23.7 4.8 20.3 21.0 5.9 22.7 21.6 4.0

Te
st

RULSTM [38] 25.3 26.7 11.2 19.4 26.9 9.7 17.6 16.0 7.9
AVT+ [45] 25.6 28.8 12.6 20.9 22.3 8.8 19.0 22.0 10.1

Reserve-L (+audio) 24.0 25.5 5.8 22.7 26.4 7.0 23.7 24.2 4.7

Table 9: Reserve gets competitive results on EPIC
Kitchen Action Anticipation challenge with zero-shot, over
methods from prior work.

For each action segment, we sample at mostN = 8 image
frames and their associated audio, with fixed time interval
t = 2.0 preceding it and ending τa seconds before the start
of the action. We append a MASK token as the sole text input
(at the last frame, after audio is optionally included).18 We
create short phrases out of all candidate nouns and verbs,
and use that as our label space to simultaneously predict
them both. We compute the score for each verb and noun
independently by averaging their scores, over all labels for
which they appear.

Results. We show the full zero-shot action anticipation
results in Table 9. We also show our results on the test set
here for our best performing model ( Reserve-L, with
audio provided). It gets competitive results on verb and
noun prediction – with only 1.6% and 3.3% lower compared
to the challenge winner method AVT+ [45], which is fully
supervised and use additional object-level annotations. On
Unseen Kitchen and Tail Classes, our model outperforms
AVT+ on noun and verb. Overall, audio significantly im-
proves the results – Reserve-L (+audio) outperforms

Reserve-L with an average 3.0%, which suggests that it
is useful for this task.

D.2.2 Zero-shot Situated Reasoning

Next, we evaluate on situated reasoning (STAR) [119] which
requires the model to capture the knowledge from surround-
ing situations and perform reasoning accordingly. STAR
dataset includes four types of questions, including interaction,
sequence, prediction, and feasibility. A model is given a
video clip, a templated question, and 4 answer choices.

Zero-shot inference approach. For each video clip, we
sample N = 8 image frames uniformly from the video, we

18We were unable to find a better text based prompt than this, as we
found that they often biased the model towards linguistically relevant words;
however, we suspect that such a prompt does exist.

also optionally include the video’s sound.
To reduce domain shift between YouTube data – where

people don’t typically ask visual questions, and where ASR
typically does not insert question marks – we convert the
question-answer pair into a statement. We did so using the
question-answer templates provided by the author, with the
answer replaced by a MASK. For example, “Q: What did the
person do with the bottle? – A: Put down.” will be converted
to “The person MASK the bottle.”.

We put the converted statement into the first frame and
use the four candidate answers as a unique label space (that
differs from example to example). Like with EPIC-Kitchens,
we also evaluate how much audio can help by masking the
audio inputs.

Results. We show our zero-shot STAR results in Ta-
ble 4 in the main text. Our base model outperforms all
supervised prior work by 3.7%. The model with audio per-
forms better, with average 1.1% improvement. Interestingly,

Reserve-L is worse than Reserve-B, we suspect
the reason is Reserve-L is sensitive to grammar details.
Given the previous example, we note that while ‘Put down’ is
a valid answer that might make sense both semantically and
syntactically, a different answer ‘pick up’ might be flagged
by some English speakers as being ungrammatical: the in-
stantiated template would then be ‘the person pick up the
bottle.’ We noticed instances of the larger model paying
greater attention to these syntax-level details, even though
they were not the focus of the task. It does suggest, how-
ever, that additional prompting (or label space augmentation)
could resolve these issues and increase performance even
further.

D.2.3 Zero-shot LSMDC

We evaluate our model on Movie Fill-in-the-Blank [95,
81] task, which based on descriptive audio description for
the visually impaired. Given a movie clip and an aligned
description with a blank in it, the task is to fill in the blank
with the correct word. Following [81], we report prediction
accuracy in test set of 30,354 examples from 10K movie
clips.

Zero-shot Inference approach. We sample N = 8
video segments uniformly over the movie clip, and extract
the audio and middle frame of each segment. We replace
the ‘blank’ token in each description with a MASK token,
and provide it (as text-based input) to the model at its final
segment. For the other segments, we optionally provide the
model with audio; for all segments, we provide the associated
image frame. We use the vocabulary set in the LSMDC
dataset as our label space (for what the ‘missing word’ might
be).

Results. Our results are shown in Table 4 in the main
text. Our model obtains 31% when audio is included, which
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outperforms human text-only performance (30.2 %) [81],
predicted by human annotators. A supervised LSTM obtains
34.4% in this text-only setting [81] which suggests that there
is a certain textual bias in this task, which our model cannot
learn (as it is zero-shot). This also suggests that state-of-
the-art supervised models exploit patterns in this vocabulary
distribution.

Without such an advantage, our model performs well,
outperforming CLIP (2%) by a large margin. This suggests
that jointly reasoning over both the visual situation, and the
linguistic context of the provided sentence, is helpful for
zero-shot performance on LSMDC fill-in-the-blank.

D.2.4 Zero-shot MSRVTTQA

Finally, we evaluate our model on MSR VTT-QA, a question-
answering task over videos [120]. We provide a model with
N = 8 video segments sampled uniformly from the video
clip, and extract an image from each one. For the first seven
segments, we optionally include audio extracted from that
point; at the last segment, we insert a converted version of
the question, along with a MASK. We compare the similarity
of that hidden state to the top 2000 most common answers,
similar to past work [126].

Similar to STAR, we convert the questions into statements
to minimize drift away from the pretraining distribution. We
use GPT3 prompted with several examples for this. Our
exact prompt is the following:

Input: what is a car being driven through?

Output: a car is being driven through _.

Input: who are running across screen?

Output: _ are running across screen.

Input: when is a girl performing?

Output: a girl is performing at _.

Input: what is a cartoon doing?

Output: a cartoon is _.

Input: how many women talk in a bedroom?

Output: _ women talk in a bedroom.

Input: what a man playing while dancing with others?

Output: a man is playing _ while dancing with others.

Input: where is a flag hoisted?

Output: a flag is hoisted in _.

Input: who talks to another man on the couch?

Output: _ talks to another man on the couch.

Input: what does a teenage girl try to get at a public restroom?

Output: a teenage girl tries to get _ at a public restroom.

Input: when do the models walk as the audience watches?

Output: the models walk as the audience watches at _.

Input: what shows a person killing animals in a green forest?

Output: _ shows a person killing animals in a green forest.

Input: who does a man ask to go on a date?

Output: a man asks _ to go on a date.

Input: what are three people sitting on?

Output: three people are sitting on _.

Input: ${question}

Output:

Then, given a new question ${question}, GPT3 gen-
erates a converted output, wherein we can replace it’s un-
derscore with a MASK. GPT3 works well at this conversion,
though sometimes it generates a sentence where inserting the
‘correct answer’ feels gramatically strange. For example, the
question ‘how many women talk in a bedroom?’ suggests
any integer might be a reasonable answer. On the other hand,
‘_ women talk in a bedroom’ implies that ‘one’ is not a valid
answer (since ‘women’ is plural). We note that the errors
caused by this conversion technique are specific to English
grammar, and so if such a question-conversion approach was
done in other languages, there could be more (or less) errors
that directly result.

Our results are shown in Table 4. Of note, our model
through automatic question-conversion outperforms Just Ask
[122], which performs an analogous (supervised-guided)
question conversion on all its YouTube transcripts, before
pretraining. Our model also outperforms CLIP, which cannot
naturally handle dynamic situations.

E. Dataset Collection
In this section, we discussed how we curated data for

YT-Temporal-1B. We had several goals in mind. We wanted
to use only public-facing data, which motivated our choice
of YouTube as it is a public platform that users understand
is public [64]. We wanted to use this platform to examine to
what extent we can learn multimodal neural script knowledge
from web data alone.

Our data collection strategy in this work was informed
by past work, notably MERLOT [126]. That paper found
that increasing the diversity and scale of a video corpus both
allowed for better learned representations. At the same time,
the data collected by MERLOT (YT-Temporal-180M) has
issues. Of note, the authors’ scraping strategies – to prioritize
monetized content – also led to a lot of U.S. local news being
in that corpus (roughly 30% of all data). Local news might
be problematic to learn from, particularly in that quantity,
due to its numerous biases (e.g. racist coverage on ‘crime’
[44, 31, 30, 57]). Our goal was to expand the dataset in both
diversity and size to 20 million videos, while having less
local news and without scraping private content.

High level approach. We adopt a similar dataset collec-
tion strategy as in MERLOT [126]. In the first phase, we
identify a candidate set of videos ID to download. In the
second phase, we open each video ID in YouTube and apply
several filtering steps that go from inexpensive to expensive.
The filtering steps allow us to exit early and possibly avoid
downloading the video if the video seems unsuitable for our
purpose from the title, description, and captions alone.
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E.1. Candidate video IDs

For MERLOT’s YT-Temporal-180M, the bulk of the
video IDs were identified by applying breadth-first-search
on YouTube channels from HowTo100M [84] and VLOG
[36]. Each channel often links to other channels, and given
a channel it is inexpensive to obtain a list of all its videos
using the youtube-dl Python package.

In this paper, we considered numerous approaches to
search for diverse, visually grounded videos. We ended up
using an approach where we used YouTube’s recommended
videos algorithm to suggest similar videos to YT-Temporal-
180M. We went through all non-news and non-sports videos
YT-Temporal-180M, and opened each video up in YouTube.
For each other video that YouTube recommended, we re-
trieved its channel ID – giving us access to not just that
video, but all other videos. This approach yielded 2 million
channels, with 200 million videos among them.

E.2. Filtering video IDs by channel

Given this (large) list of channels, each with many videos,
we took steps to filter it further. We used the python cld3
library to remove channels whose titles might not be in
English. We then finetuned, and used, a language model to
identify channels likely to have visually grounded videos,
which we describe next.

Inmore detail, we selected 2000 videos, and askedworkers
on Mechanical Turk to rate their level of groundedness, their
genre, and whether they had explicit content or not. The
questions we asked are shown in Figure 8. We annotated 2k
videos under this schema, and trained a model to predict the
annotations given video metadata.

For model training, we used a slightly different setting
to what we gave the crowdworkers. We trained a model to
predict the labels, given a formatted list of 5 video titles
from the same channel. During training, we made the weak-
supervision assumption that all videos from a channel have
exactly the same rating (as the video we annotated). This
enabled us to collect 84k examples from our 2k annotations.
Themodelwe chosewasT5-basemodel [92], which generates
the labels left-to-right in text form (and which we converted
automatically to a structured representation).

We then used this model to identify channels that seem
especially promising. For each channel with at least 5 videos,
we randomly sampled 8 sets of length-5 videos, and used
the finetuned T5 model to classify them. We filtered out
any channel that had at least 25% of likely non-English or
irrelevant-English videos, any channel that had at least 25%
of slideshows, and any channel that likely had racist or sexist
content.

One side benefit of this model is that it allowed us to
estimate our videos’ genre breakdown before downloading
them. We found 1% Gaming videos, 11% News videos, 20%
How-To videos, 20% ‘chatting’ videos, 5% sports videos, 5%

${VIDEO}
Q1. How would you describe the role of English speech in the

video?
a. This video doesn’t have spoken English, or if it does, it’s
irrelevant to what’s going on in the video.
b. This video has English speech that describes, or adds onto,
the visual content.

Q2. Select at least one genres of the video:
a. Gaming
b. News
c. How-to
d. Chatting
e. Sports
f. Music
g. Movies / Drama
h. Documentary
i. Miscellaneous

Q3. Select if any of the following are true:
a. A variety of objects are interacted with.
b. A variety of actions are performed.
c. A variety of scenes are performed.
d. This video is a slideshow.
e. This video contains racist or sexist content..

Figure 8: Video annotation. We had workers on Mechanical
Turk annotate 2000 videos in our dataset with this question-
naire, allowing us to then train a model to identify suitable
channels for our purpose.

Music videos, 3% Movies/Drama videos, 4% Documentary
videos, and 31% Miscellaneous. The Gaming videos were
then filtered out.

We used the classification model to create a budget for
how many videos to download from each channel; with the
aim to download more videos from likely more-grounded
channels. Using the answers to Q3 (from Figure 8), we
gave each channel 1 point for likely having ‘a variety of
objects’, 2 points for ‘a variety of actions’, and 0.5 points for
‘a variety of scenes.’ We subtracted 3 points if it was likely
to be a slideshow. (Likely-racist or sexist channels were
already filtered out.) We then z-normalized and softmaxed
the channel scores, and used the result as the channel-level
budgets. Any channel with an aggregate ‘interestingness’
score of 1 standard deviation above the mean would then
have a budget of 8x larger than the mean. We clipped the
channel-level budgets to include at most 500 videos per
channel.

This process (finally!) gave us 30 million YouTube video
IDs that were likely to be high-quality.

E.3. Filtering videos from their metadata

Last, we filtered and downloaded these videos using a
filtering approach similar to [126]. We first retrieved the
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Figure 9: An image prompt used in zero-shot audio classifi-
cation. Here, “the sound of” is always inserted, and the word
“birds” is one of the labels in ESC50 [89]. We consider one
image prompt for each label in ESC50 (or whichever dataset
we are using).

video metadata and used it to filter out ‘gaming’ videos. We
then retrieved the video’s transcript, and filtered out any
video without a ‘dense’ span of spoken words – defined as
an interval of 30 seconds where at least 50 words are spoken.
Additionally, we used the Python package cld3 to filter out
any transcript with a probability of less than 80% of being
English. Last, we used a hidden feature in the YouTube API
to download four thumbnails of the video. Using the image
classification model from [126], we filtered out videos whose
four thumbnails had an average cosine similarity of above
85%, or that contained fewer than 1 object from COCO.

Unlike [126], we did not use a sequence-to-sequence
model to ‘translate’ spoken text to text that appears more
stylistically like written English (i.e., by adding capitalization
and punctuation, and removing filler words).

F. Additional Experiments and Exploration
In this section, we briefly include additional experiments,

showcasing our model’s performance on specific tasks that
do not necessarily require multimodal script knowledge.

F.1. Zero-shot Audio classification

We evaluate Reserve on the task of zero-shot audio
classification, to study to what extent its learned audio repre-
sentations can directly predict text-based labels. We conduct
this evaluation on environmental sounds from ESC50 [89],
urban sounds from US8K [97], and (as part of the privacy-
minded exploration in Appendix A) celebrity voices from
VoxCeleb2 [86].

We consider the format where we encode an audio input
into a CLS level representation, and retrieve the most-similar
label given a set of encoded options. We encode the audio
input with our encoder, which takes in as input audio clips
of length at most 1.6 seconds. For shorter audio clips (like
many sounds in ESC50), we repeat them in time until their
length is at least 1.6 seconds. For longer audio clips, we
encode multiple CLS representations and then average the

Accuracy (%)
Model Prompting ESC50 US8K VoxCeleb2
AudioClip 68.6 68.8

Reserve-L
Text-only. 41.6 60.2 10.8
Image-only. 42.8 54.3 13.3
Image and text. 52.2 62.3 9.6

Table 10: Zero-shot audio classification accuracies (%) on
ESC50 [89], US8K [97], and VoxCeleb2 [86]. We compare
our model with AudioClip [53], which was pretrained on
supervised data from AudioSet [42]. Our Reserve per-
forms well across the board, especially when given both the
image and the text as a prompt – demonstrating its OCR
capability.

resulting vectors.
We consider the following ways to encode the labels:

a. Text-only. Inspired by the prompt ‘a photo of’, which is
used in CLIP’s zero-shot image classification task [91],
we give Reserve’s joint encoder a blank image, with
associated tokens the sound of ${label}. We do this
once for each label, giving us a single ‘target’ vector for
each possible label in the dataset.

b. Image-only. Inspired by YouTube videos of sound
effects19, we created image-only prompts that suggest a
sound (of the target class) is playing in the background.
An example is shown in Figure 9. We encode each image
with our joint encoder, and do this once for each label.
We note that for VoxCeleb2, we use face images of
celebrities rather than this image-based prompt, due to
our interest in exploring whether models can perform
person-level recognition due to the privacy issue (Ap-
pendix A.1.1).

c. Image and text. Here, we combine both of the above
options: encoding one input for each label, using both
the image and text prompt.

For each prompt, we append the token ‘MASKAUDIO’ and
extract the hidden state from there, as our final representation
for that label.

We present our results in Table 10. The results show,
possibly surprisingly, that Reserve can perform optical
character recognition over image prompts like Figure 9 –
given just the image, its accuracy on ESC50 is higher than
given just text. Its accuracy on ESC50 and US8K improves
further when given both an image and text.

These results are slightly different for VoxCeleb2, which
emphasizes long-tail recognition of people – something that
might be more encyclopedic than semantic, and that we did
not wish to optimize in this work. There, when given an
image of a celebrity’s face, it demonstrates some capacity

19For instance, youtu.be/VmgKryu4__k.
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Figure 10: MASKed audio self-supervision on different examples. Similar to Figure 5, we show predictions from
Reserve-B over the course of pretraining. Match performance increases over time. The audio prediction in the

first row is perhaps made easier by the speaker’s australian accent. The audio prediction in the second row is perhaps easier due
to the lecture-video setting. In the third row, both audio and text span prediction improves, with text being slightly favored in
the end. This might be in part because of the truncation we do on audio (Section C.3) – the audio span is shorter than the text
span of ‘dice them up and’ so as to not leak information, making prediction more challenging.

at linking it with one of their audio clips – a capacity that
decreases if prompted with additional text. We suspect
that this is due to interpreting the given text as spoken, for
example, Justin Bieber himself saying ‘the sound of Justin
Bieber.’ On all celebrities, Reserve struggles versus
recognition-focusedmodels like CLIP [91] (Appendix A.1.1).

Overall, our model displays strong audio understanding
ability. In comparison, AudioCLIP [53] (which is supervised
on human-annotated labels from AudioSet [42]), performs
16% higher on ESC50, and 6.4% higher on US8K.

F.2. Additional Qualitative Analysis

In Figure 10, we include an additional figure of examples,
of the same format as Figure 5. The examples are chosen
randomly – not by how much Reserve improved at
retrieving their audio or text spans over the course of training.
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